Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số kỹ thuật sử dụng bất đẳng thức AM - GM và bất đẳng thức Bunyakovski

Tài liệu gồm 50 trang, được biên soạn bởi thầy giáo Đào Văn Nam, hướng dẫn một số kỹ thuật sử dụng bất đẳng thức AM – GM và bất đẳng thức Bunyakovski để giải toán. A. MỘT SỐ QUY TẮC CHUNG KHI SỬ DỤNG BẤT ĐẲNG THỨC AM – GM VÀ BẤT ĐẲNG THỨC BUNYAKOVSKI. + Quy tắc song hành: Đa số các bất đẳng thức đều có tính đối xứng nên chúng ta có thể sử dụng nhiều bất đẳng thức trong chứng minh một bài toán để định hướng cách giải nhanh hơn. + Quy tắc dấu bằng: Dấu “=” trong bất đẳng thức có vai trò rất quan trọng. Nó giúp ta kiểm tra tính đúng đắn của chứng minh, định hướng cho ta cách giải. Chính vì vậy khi giải các bài toán chứng minh bất đẳng thức hoặc các bài toán cực trị ta cần rèn luyện cho mình thói quen tìm điều kiện của dấu bằng mặc dù một số bài không yêu cầu trình bày phần này. + Quy tắc về tính đồng thời của dấu bằng: Chúng ta thường mắc sai lầm về tính xảy ra đồng thời của dấu “=” khi áp dụng liên tiếp hoặc song hành nhiều bất đẳng thức. Khi áp dụng liên tiếp hoặc song hành nhiều bất đẳng thức thì các dấu “=” phải cùng được thỏa mãn với cùng một điều kiện của biến. + Quy tắc biên: Đối với các bài toán cực trị có điều kiện ràng buộc thì cực trị thường đạt được tại vị trí biên. + Quy tắc đối xứng: Các bất đẳng thức có tính đối xứng thì vai trò của các biến trong các bất đẳng thức là như nhau do đó dấu “=” thường xảy ra tại vị trí các biến đó bằng nhau. Nếu bài toán có điều kiện đối xứng thì chúng ta có thể chỉ ra dấu “=”xảy ra tại khi các biến đó bằng nhau và bằng một giá trụ cụ thể. B. MỘT SỐ KỸ THUẬT SỬ DỤNG BẤT ĐẲNG THỨC AM – GM. C. MỘT SỐ KỸ THUẬT SỬ DỤNG BẤT ĐẲNG THỨC BUNYAKOVSKI.

Nguồn: toanmath.com

Đọc Sách

Các bài toán về ước và bội
Nội dung Các bài toán về ước và bội Bản PDF - Nội dung bài viết Các bài toán về ước và bội Các bài toán về ước và bội Tài liệu này bao gồm 44 trang và được trích đoạn từ một cuốn sách về các bài toán liên quan đến ước và bội. Các bài toán này có thể được áp dụng trong nhiều lĩnh vực khác nhau như toán học, khoa học máy tính, và kỹ thuật. Việc hiểu biết về các bài toán này sẽ giúp bạn phát triển kỹ năng giải quyết vấn đề và logic. Hãy cẩn thận khi giải quyết các bài toán này, vì chúng có thể đưa ra những giải pháp không ngờ đến.
Phân dạng và phương pháp giải toán số học và tổ hợp Nguyễn Quốc Bảo
Nội dung Phân dạng và phương pháp giải toán số học và tổ hợp Nguyễn Quốc Bảo Bản PDF - Nội dung bài viết Phân dạng và phương pháp giải toán số học và tổ hợp của Nguyễn Quốc Bảo Phân dạng và phương pháp giải toán số học và tổ hợp của Nguyễn Quốc Bảo Tài liệu được biên soạn bởi thầy giáo Nguyễn Quốc Bảo, gồm 523 trang, chuyên về phân dạng và hướng dẫn phương pháp giải các bài toán chuyên đề số học và tổ hợp. Được sử dụng để bồi dưỡng học sinh giỏi Toán từ lớp 8 đến lớp 9, cũng như ôn tập cho kì thi tuyển sinh vào lớp 10 môn Toán. Phần đầu tiên của tài liệu tập trung vào các chủ đề số học trung học cơ sở như các bài toán về ước và bội, bao gồm cách tìm số ước của một số, tìm số nguyên n thỏa mãn điều kiện chia hết, và tìm số biết ƯCLN và BCNN của chúng. Ngoài ra, còn có các bài toán về phân số tối giản, liên quan đến phép chia có dư, phép chia hết, ƯCLN, BCNN, và ƯCLN của hai số theo thuật toán Ơ-clit. Chủ đề tiếp theo là các bài toán về quan hệ chia hết, trong đó hướng dẫn sử dụng tính chất của n số tự nhiên liên tiếp, phân tích thành nhân tử, tách tổng, hằng đẳng thức, xét số dư, phản chứng, quy nạp, nguyên lý Dirichlet, đồng dư, và định lý Fermat. Các bài toán trong phần này liên quan đến cấu tạo số và tính chia hết, đồng thời áp dụng vào các bài toán phức tạp hơn về đa thức. Tài liệu này giúp học sinh hiểu rõ hơn về cách phân loại và giải các bài toán số học và tổ hợp một cách logic và chính xác, từ đó nắm vững kiến thức và tự tin hơn khi giải các bài toán trong kì thi và cuộc sống hằng ngày.
Chuyên đề hàm số và đồ thị ôn thi vào môn Toán Nguyễn Đăng Tuấn
Nội dung Chuyên đề hàm số và đồ thị ôn thi vào môn Toán Nguyễn Đăng Tuấn Bản PDF - Nội dung bài viết Chuyên Đề Hàm Số Và Đồ Thị Ôn Thi Toán Lớp 10 - Nguyễn Đăng Tuấn Chuyên Đề Hàm Số Và Đồ Thị Ôn Thi Toán Lớp 10 - Nguyễn Đăng Tuấn Tài liệu "Chuyên đề hàm số và đồ thị ôn thi vào lớp 10 môn Toán" được biên soạn bởi Thạc sĩ Nguyễn Đăng Tuấn với 52 trang, bao gồm 105 bài tập chuyên đề hàm số và đồ thị ôn thi vào môn Toán. Mỗi bài tập đều có đáp án và lời giải chi tiết, giúp học sinh hiểu rõ từng bước giải quyết vấn đề. Qua tài liệu này, bạn sẽ được hướng dẫn giải các bài tập như: Đặt hàm số y = mx + m^2 - 1/4 (trong đó m là tham số) có đồ thị là đường thẳng (d). Hỏi m nào thì (d) đi qua điểm A(-1;2)? Xác định giá trị của m sao cho đường thẳng (d) song song với đường thẳng (Δ) có phương trình y = x + 5/1. Chứng minh rằng đường thẳng (d) luôn đi qua một điểm cố định khi m thay đổi. Ngoài ra, tài liệu còn cung cấp các bài tập khác như tìm tọa độ giao điểm của hai đồ thị, tính diện tích của tứ giác được tạo bởi hai đồ thị, xác định điểm cắt của đồ thị với đường thẳng, và nhiều bài tập khác giúp học sinh ôn luyện và nắm vững kiến thức hàm số và đồ thị. Để biết thêm thông tin chi tiết, vui lòng tải tài liệu và tham khảo để đạt kết quả cao trong kỳ thi Toán sắp tới!
Các dạng toán và phương pháp giải hệ phương trình đại số Nguyễn Quốc Bảo
Nội dung Các dạng toán và phương pháp giải hệ phương trình đại số Nguyễn Quốc Bảo Bản PDF - Nội dung bài viết Các dạng toán và phương pháp giải hệ phương trình đại số Nguyễn Quốc Bảo Các dạng toán và phương pháp giải hệ phương trình đại số Nguyễn Quốc Bảo Tài liệu này bao gồm 203 trang, được biên soạn bởi thầy giáo Nguyễn Quốc Bảo, chuyển tập các dạng toán và hướng dẫn cách giải hệ phương trình đại số. Được xem là tài liệu lý tưởng để bồi dưỡng học sinh giỏi ở cấp độ lớp 8 và 9 cũng như ôn thi tuyển sinh vào lớp 10 môn Toán. Mục lục của tài liệu bao gồm nhiều phần như sau: Phần I. MỘT SỐ DẠNG HỆ PHƯƠNG TRÌNH THƯỜNG GẶP 1. Hệ phương trình bậc nhất hai ẩn 2. Hệ gồm một phương trình bậc hai và một... Từ những dạng toán và phương pháp giải được tập hợp trong tài liệu này, học sinh sẽ có cơ hội hiểu rõ hơn về các kiến thức, cách giải và ứng dụng trong thực tế, từ đó nâng cao kỹ năng giải toán của mình.