Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường Yên Dũng 2 Bắc Giang

Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường Yên Dũng 2 Bắc Giang Bản PDF Đề thi học kỳ 2 Toán lớp 12 năm học 2018 – 2019 trường THPT Yên Dũng 2 – Bắc Giang mã đề 1201 gồm 5 trang, đề được biên soạn theo dạng đề trắc nghiệm với 50 câu hỏi và bài tập, học sinh có 90 phút để hoàn thành bài thi HK2 Toán lớp 12, kỳ thi nhằm đánh giá khả năng tiếp thu các kiến thức Giải tích 12 và Hình học 12 học sinh đã được học trong học kỳ vừa qua. Trích dẫn đề thi học kỳ 2 Toán lớp 12 năm 2018 – 2019 trường Yên Dũng 2 – Bắc Giang : + Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + y – z – 3 = 0 và hai điểm M(1;1;1), N(-3;-3;-3). Mặt cầu (S) đi qua M, N và tiếp xúc với mặt phẳng (P) tại điểm Q. Biết rằng Q luôn thuộc một đường tròn cố định. Tìm bán kính của đường tròn đó. [ads] + Cho một viên gạch men có dạng hình vuông OABC như hình vẽ. Sau khi tọa độ hóa, ta có O(0;0), A(0;1), B(1;1), C(1;0) và hai đường cong trong hình lần lượt là đồ thị hàm số y = x^3 và y = x^1/3. Tính tỷ số diện tích của phần tô đậm so với diện tích phần còn lại của hình vuông. + Cho mặt cầu (S): (x – 1)^2 + (y – 1)^2 + (z – 1)^2 = 9, đường thẳng (d): (x – 1)/1 = (y – 1)/2 = z/2. Biết phương trình mặt phẳng (P) chứa (d) sao cho (P) cắt (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất có dạng ax + by + cz – 6 = 0. Giá trị của a + b + c bằng? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi HK2 Toán 12 năm học 2016 - 2017 trung tâm GDNN - GDTX Hạ Hòa
Đề thi HK2 Toán 12 năm học 2016 – 2017 trung tâm GDNN – GDTX Hạ Hòa gồm 4 mã đề, mỗi đề gồm 40 câu hỏi trắc nghiệm, đề thi có đáp án.
Đề thi HK2 Toán 12 năm học 2016 - 2017 trường THPT Nam Sài Gòn - TP. HCM
Đề thi HK2 Toán 12 năm học 2016 – 2017 trường THPT Nam Sài Gòn – TP. HCM gồm 30 câu hỏi trắc nghiệm và 3 bài tập tự luận, đề thi có đáp án và hướng dẫn giải bài tập tự luận. Trích một số bài toán trong đề: + Diện tích tam giác được cắt ra bởi các trục tọa độ và tiếp tuyến của đồ thị y = lnx tại giao điểm của đồ thị hàm số với trục Ox là? + Trong không gian với hệ tọa độ Oxyz, gọi (P) là mặt phẳng đi qua G(1; 2; –1) và cắt Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC. Viết phương trình mặt phẳng (P). + Trong không gian Oxyz, cho các điểm A(1;0;0), B(-2;0;3), M(0;0;1) và N(0;3;1). Mặt phẳng (P) đi qua các điểm M, N sao cho khoảng cách từ điểm B đến (P) gấp hai lần khoảng cách từ điểm A đến (P). Có bao nhiêu mặt phẳng (P) thỏa mãn đề bài? A. Có hai mặt phẳng (P) B. Không có mặt phẳng (P) nào C. Có vô số mặt phẳng (P) D. Chỉ có một mặt phẳng (P)
Đề thi HK2 Toán 12 năm học 2016 - 2017 trường THPT chuyên Lý Tự Trọng - Cần Thơ
Đề thi HK2 Toán 12 năm học 2016 – 2017 trường THPT chuyên Lý Tự Trọng – Cần Thơ gồm 45 câu hỏi trắc nghiệm và 1 bài tập tự luận. Trích một số bài toán trong đề: + Trên mặt phẳng phức, tập hợp điểm biểu diễn cho số phức z thỏa mãn điều kiện /z/ = 2 là: A. Đường tròn tâm O, bán kính R = 2 B. Đường tròn tâm O, bán kính R = 4 C. Đường tròn tâm O, bán kính R = 1/2 D. Đường tròn tâm O , bán kính R = căn 2 + Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như hình vẽ. Khẳng định nào sau đây đúng? A. Hàm số y = f(x) có giá trị cực đại bằng 0 B. Giá trị lớn nhất của hàm số y = f(x) trên tập R là 1 C. Hàm số y = f(x) đạt cực đại tại x = 0 và cực tiểu tại x = -1 D. Hàm số y = f(x) có đúng một cực trị + Tìm phần thực của số phức (2 + 3i).i^10
Đề thi HK2 Toán 12 năm học 2016 - 2017 trường THPT Nguyễn Du - TP. HCM
Đề thi HK2 Toán 12 năm học 2016 – 2017 trường THPT Nguyễn Du – TP. HCM gồm 30 câu hỏi trắc nghiệm và 3 bài tập tự luận. Trích một số bài toán trong đề: + Trong chuyến đi tham quan học tập ngoại khóa ở Đà Lạt của Trường THPT Nguyễn Du, xe số 1 đang chạy với vận tốc v = 30 (m/s) thì đột ngột thay đổi gia tốc a(t) = 4 – t (m/s2). Tính quãng đường xe số 1 đi được kể từ thời điểm thay đổi gia tốc đến thời điểm vận tốc lớn nhất. + Trong buổi đối thoại học đường, học sinh có phản ánh trong lớp học có nhiều muỗi. Ban Giám Hiệu Trường THPT Nguyễn Du đã mời Trung tâm y tế dự phòng về trường để khảo sát. Khi khảo sát tại phòng học số 39 thì người ta thấy tại ngày thứ x có f(x) con muỗi. Biết rằng f ‘(x) = 10/(x + 1) và lúc đầu có 100 con muỗi trong phòng học. Hỏi số lượng con muỗi trong phòng học sau 2 ngày gần với số nào sau đây? + Tính thể tích của khối tròn xoay sinh ra khi cho quay quanh trục hoành, hình phẳng giới hạn bởi các đường: y = x – 2, y = 0, x = 2 và x = 4.