Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 năm 2019 - 2020 môn Toán sở GDĐT Quảng Ngãi

THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề tuyển sinh lớp 10 năm 2019 – 2020 môn Toán sở GD&ĐT Quảng Ngãi, đề thi gồm 1 trang với 5 bài toán dạng tự luận, thời gian học sinh làm bài 90 phút, kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2019, đề thi có hướng dẫn làm bài. Trích dẫn đề tuyển sinh lớp 10 năm 2019 – 2020 môn Toán sở GD&ĐT Quảng Ngãi : + Một đội công nhân đặt kế hoạch sản xuất 250 sản phẩm. Trong 4 ngày đầu, họ thực hiện đúng kế hoạch. Mỗi ngày sau đó, họ đều vượt mức 5 sản phẩm nên đã hoàn thành công việc sớm hơn 1 ngày so với dự định. Hỏi theo kế hoạch, mỗi ngày đội công nhân đó làm được bao nhiêu sản phẩm? Biết rằng năng suất làm việc của mỗi công nhân là như nhau. + Cho tam giác nhọn ABC (AB < AC), đường cao AH, nội tiếp đường tròn (O). Gọi D và E thứ tự là hình chiếu vuông góc của H lên AB và AC. a) Chứng minh các tứ giác AEHD và BDEC nội tiếp được đường tròn. b) Vẽ đường kính AF của đường tròn (O). Chứng minh BC = √(AB.BD) + √(AC.CE) và AF vuông góc với DE. c) Gọi O’ là tâm đường tròn ngoại tiếp tam giác BDE. Chứng minh O’ là trung điểm của HF. d) Tính bán kính đường trò (O’) biết BC = 8cm, DE = 6cm, AF = 10cm. + Cho hình vuông ABCD. Gọi S1 là diện tích phần giao của hai nửa đường tròn đường kính AB và AD. S2 là diện tích phần còn lại của hình vuông nằm ngoài hai nửa đường trong nói trên (như hình vẽ bên).Tính S1/S2.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 trường ĐHSP Hà Nội
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 trường ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên môn Toán (chuyên) 2022 trường ĐHSP Hà Nội Đề thi tuyển sinh chuyên môn Toán (chuyên) 2022 trường ĐHSP Hà Nội Chào đón quý thầy, cô giáo và các em học sinh lớp 9! Đây là đề thi chính thức dành cho thí sinh muốn thi vào lớp 10 THPT chuyên môn Toán (chuyên) năm 2022 tại trường Đại học Sư Phạm Hà Nội. Đề thi này chỉ dành cho thí sinh thi vào lớp chuyên Toán và chuyên Tin học (đề thi vòng 2). Kỳ thi sẽ diễn ra vào chiều thứ Tư, ngày 01 tháng 06 năm 2022. Đề thi bao gồm câu hỏi và đáp án cùng lời giải chi tiết do CLB Toán Lim thực hiện, gồm các thành viên: Nguyễn Duy Khương, Nguyễn Văn Hoàng, Nguyễn Khang và Nguyễn Hoàng Việt. Dưới đây là một số câu hỏi trích dẫn từ đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 trường ĐHSP Hà Nội: 1. Chứng minh rằng nếu có đa thức P(x) = ax² + bx + c (với a khác 0) nhận giá trị nguyên với mọi số nguyên x, thì ba số 2a, a + b, c đều là số nguyên. Ngược lại, nếu ba số 2a, a + b, c là số nguyên, thì P(x) cũng nhận giá trị nguyên với mỗi số nguyên x. 2. Trong tam giác ABC đều ngoại tiếp (O), cung nhỏ OB của đường tròn ngoại tiếp tam giác (OBC) cắt đường tròn (O) tại E. Tia BE cắt đường tròn (O) tại F. Hãy chứng minh rằng EO là tia phân giác góc CEF và tứ giác ABOF là tứ giác nội tiếp. Hơn nữa, chứng minh rằng A, F, D thẳng hàng với D là giao điểm thứ hai của CE và đường tròn (O). 3. Viết 10 số từ 0 đến 9 vào mười ô tròn sao cho mỗi số được viết đúng một lần. Tính tổng ba số trên mỗi đoạn thẳng để nhận được 6 tổng. Có cách viết 10 số như vậy không để 6 tổng bằng nhau? Chúc các em học sinh lớp 9 ôn tập tốt và thành công trong kỳ thi tuyển sinh sắp tới!
Đề tuyển sinh chuyên môn Toán năm 2022 trường ĐHSP Hà Nội
Nội dung Đề tuyển sinh chuyên môn Toán năm 2022 trường ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 chuyên môn Toán năm 2022 trường ĐHSP Hà Nội Đề thi tuyển sinh lớp 10 chuyên môn Toán năm 2022 trường ĐHSP Hà Nội Chào các thầy cô và các em học sinh lớp 9, Sytu xin giới thiệu đến quý vị đề thi chính thức tuyển sinh vào lớp 10 THPT chuyên môn Toán năm 2022 tại trường Đại học Sư Phạm Hà Nội. Đề thi này sẽ được sử dụng cho mọi thí sinh dự tuyển vào các chuyên ngành, Toán chung, Toán điều kiện và vòng 1 của kỳ thi. Đề thi sẽ diễn ra vào thứ Tư ngày 01 tháng 06 năm 2022. Với sự chuẩn bị cẩn thận, đề thi sẽ có đáp án và lời giải chi tiết do các tác giả uy tín thực hiện, bao gồm Nguyễn Duy Khương, Trịnh Đình Triển, TQĐ, Nguyễn Khang, Nguyễn Hoàng Việt. Dưới đây là một số câu hỏi mẫu trong đề tuyển sinh: Trong mặt phẳng tọa độ Oxy, hãy viết phương trình đường thẳng (d): y = ax + b biết (d) đi qua A(2;−1) và song song với đường thẳng y = −3x + 1. Một cửa hàng kinh doanh điện máy sau khi nhập về chiếc tivi, đã bán chiếc tivi và thu được lãi 10% của giá nhập. Nếu cửa hàng tăng giá bán thêm 5% và chiết khấu cho khách 245000 đồng, lãi sẽ lên 12% của giá nhập. Hãy tìm giá tiền khi nhập về của chiếc tivi đó. Cho tam giác ABC đều nội tiếp (O), điểm D thuộc cung AB nhỏ (D khác A,B). Các tiếp tuyến tại B,C của (O) cắt AD theo thứ tự tại E,G. Gọi I là giao điểm của CE và BG. a) Chứng minh rằng △EBC ∽ △BCG. b) Tính số đo góc BIC. Từ đó chỉ ra BIDE là tứ giác nội tiếp. c) Gọi DI ∩ BC = K. Chứng minh rằng: BK2 = KI.KD. Hãy chuẩn bị tâm lý và kiến thức tốt để chinh phục đề thi tuyển sinh năm nay. Chúc các em thành công!
Đề khảo sát Toán vào lần 2 năm 2022 trường Nguyễn Tất Thành Hà Nội
Nội dung Đề khảo sát Toán vào lần 2 năm 2022 trường Nguyễn Tất Thành Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán vào lần 2 năm 2022 trường Nguyễn Tất Thành Hà Nội Đề khảo sát Toán vào lần 2 năm 2022 trường Nguyễn Tất Thành Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay chúng ta sẽ cùng tìm hiểu về đề kiểm tra khảo sát môn Toán để ôn thi tuyển sinh vào lớp 10 tại trường THCS & THPT Nguyễn Tất Thành, Hà Nội. Đề thi bao gồm 08 câu trả lời ngắn và 03 câu tự luận, thời gian làm bài là 90 phút. Trích dẫn đề khảo sát Toán vào lớp 10 lần 2 năm 2022 trường Nguyễn Tất Thành – Hà Nội: + Một chiếc máy bay cất cánh từ mặt đất với vận tốc 600 km/h, theo đường thẳng tạo với phương nằm ngang một góc 30°. Hỏi sau 0,5 phút máy bay lên cao được bao nhiêu ki-lô-mét theo phương thẳng đứng? + Một chiếc ca nô xuôi dòng từ bến A đến bến B, cách nhau 30 km. Khi đến bến B, ca nô quay trở về bến A, cả đi lẫn về hết 2 giờ 45 phút. Tính vận tốc của ca nô biết vận tốc của dòng nước là 2 km/h. + Tính bán kính của hình thang cân ABCD có đáy bé AB = 2 cm, đáy lớn CD = 8 cm và ngoại tiếp hình tròn tâm O bán kính r. Hy vọng đề thi sẽ giúp các em rèn luyện và nâng cao kiến thức và kỹ năng giải toán. Chúc các em thành công!
Đề vào môn Toán (chuyên) năm 2022 2023 trường chuyên Lê Hồng Phong Nam Định
Nội dung Đề vào môn Toán (chuyên) năm 2022 2023 trường chuyên Lê Hồng Phong Nam Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường chuyên Lê Hồng Phong Nam Định Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường chuyên Lê Hồng Phong Nam Định Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi tuyển sinh vào lớp 10 chuyên môn Toán năm học 2022 – 2023 của trường THPT chuyên Lê Hồng Phong, Nam Định. Kỳ thi sẽ diễn ra vào ngày Thứ Năm, 26 tháng 05 năm 2022. Trích dẫn đề thi vào lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường chuyên Lê Hồng Phong – Nam Định: + Từ năm 2022, chúng ta có các số nguyên dương đầu tiên là 1, 2, 3, ..., 2022. Trong đó, n số phân biệt được chọn sao cho hiệu của bất kì hai số được chọn không phải là ước của tổng hai số đó. Chúng ta cần chứng minh rằng số lượng n số không vượt quá 674. + Đề bài còn liên quan đến việc kẻ hai tiếp tuyến MA và MB từ điểm M nằm ngoài đường tròn (O;R). Tiếp theo, chúng ta cần chứng minh các mệnh đề về tứ giác OHCD nội tiếp, ba điểm A, C, G thẳng hàng, và tính giá trị biểu thức T với điều kiện OM = 3R. + Cuối cùng, đề bài còn đưa ra phương trình liên quan đến số nguyên tố p có dạng 4k + 3. Chúng ta cần chứng minh mối quan hệ giữa a, b, và p trong cách chia hết, và áp dụng vào việc giải phương trình x^2 + 4x + 9y^2 = 58. Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường chuyên Lê Hồng Phong Nam Định mang đến cho các em học sinh cơ hội thách thức và phát triển năng lực toán học của mình.