Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 12 môn Toán ôn thi THPTQG năm 2018 2019 trường chuyên Vĩnh Phúc lần 3

Nội dung Đề KSCL lớp 12 môn Toán ôn thi THPTQG năm 2018 2019 trường chuyên Vĩnh Phúc lần 3 Bản PDF Vừa qua, trường THPT chuyên Vĩnh Phúc đã tiếp tục tổ chức kỳ thi khảo sát chất lượng các môn thi THPT Quốc gia năm học 2018 – 2019, đây đã là lần thứ 3 trường THPT chuyên Vĩnh Phúc tổ chức kỳ thi này, mục đích nhằm giúp học sinh được rèn luyện, thử sức thường xuyên để củng cố và nâng cao kiến thức trước khi bước vào kỳ thi chính thức THPT Quốc gia năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo tổ chức. Sytu xin giới thiệu đến thầy, cô và các em học sinh khối 12 nội dung đề KSCL Toán lớp 12 ôn thi THPTQG năm 2018 – 2019 trường chuyên Vĩnh Phúc lần 3, đề bám sát cấu trúc đề minh họa môn Toán năm 2019 của Bộ Giáo dục và Đào tạo với 50 câu trắc nghiệm khách quan, thời gian làm bài thi môn Toán là 90 phút, đề thi có đáp án và lời giải chi tiết. [ads] Trích dẫn đề KSCL Toán lớp 12 ôn thi THPTQG năm 2018 – 2019 trường chuyên Vĩnh Phúc lần 3 : + Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B. Đặt α là góc giữa AB và đáy. Tinh tanα khi thể tích khối tứ diện OO’AB đạt giá trị lớn nhất. + Trong không gian Oxyz, lấy điểm C trên tia Oz sao cho OC = 1. Trên hai tia Ox, Oy lần lượt lấy hai điểm A, B thay đổi sao cho OA + OB = OC. Tìm giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp tứ diện O.ABC? + Cho hàm số y = f(x) có đạo hàm trên R và đồ thị hàm số y = f'(x) trên R như hình vẽ. Mệnh đề nào sau đây là đúng? A. Hàm số y = f(x) có 1 điểm cực tiểu và không có cực đại. B. Hàm số y = f(x) có 1 điểm cực đại và 2 điểm cực tiểu. C. Hàm số y = f(x) có 1 điểm cực đại và không có cực tiểu. D. Hàm số y = f(x) có 1 điểm cực đại và 1 điểm cực tiểu. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát lớp 12 môn Toán lần 2 năm 2020 2021 trường THPT Thăng Long Hà Nội
Nội dung Đề khảo sát lớp 12 môn Toán lần 2 năm 2020 2021 trường THPT Thăng Long Hà Nội Bản PDF Nhằm chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông năm 2021, ngày 19 tháng 05 năm 2021, trường THPT Thăng Long, quận Hai Bà Trưng, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2020 – 2021 lần thứ hai; kỳ thi được tổ chức theo hình thức thi trực tuyến (online). Đề khảo sát Toán lớp 12 lần 2 năm 2020 – 2021 trường THPT Thăng Long – Hà Nội được biên soạn bám sát cấu trúc đề tham khảo TN THPT 2021 môn Toán của Bộ Giáo dục và Đào tạo; đề thi có đáp án và lời giải chi tiết VD – VDC mã đề 184, 348, 552, 774. Trích dẫn đề khảo sát Toán lớp 12 lần 2 năm 2020 – 2021 trường THPT Thăng Long – Hà Nội : + Trong không gian hệ trục tọa độ Oxyz, cho mặt cầu 2 2 2 64 1 2 2 9 S x y z. Trên tia Ox Oy Oz lần lượt lấy các điểm A B C thỏa mãn 1 2 2 9 OA OB OC. Biết mặt phẳng ABC tiếp xúc với mặt cầu S. Thể tích khối chóp OABC là? + Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A và B. Gọi là đường thẳng đi qua điểm M sao cho tổng khoảng cách từ hai điểm A và B đến đường thẳng là lớn nhất. Đường thẳng có một vectơ chỉ phương là u a b. Khi đó 2a b bằng? + Trong mặt phẳng tọa độ, các điểm A và B trong hình vẽ dưới đây lần lượt là điểm biểu diễn của các số phức 1 z và 2 z. Modul của số phức 1 2 z z bằng?
Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 sở GD ĐT thành phố Cần Thơ
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 sở GD ĐT thành phố Cần Thơ Bản PDF Thứ Tư ngày 19 tháng 05 năm 2021, sở Giáo dục và Đào tạo thành phố Cần Thơ tổ chức kỳ thi khảo sát chất lượng học sinh lớp 12 môn Toán năm học 2020 – 2021, nhằm giúp các em ôn tập, chuẩn bị cho kỳ thi tốt nghiệp THPT 2021 môn Toán. Đề khảo sát chất lượng Toán lớp 12 năm 2021 sở GD&ĐT thành phố Cần Thơ mã đề 106 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề khảo sát chất lượng Toán lớp 12 năm 2021 sở GD&ĐT thành phố Cần Thơ : + Cho hình trụ có bán kính đáy bằng 3 2a. Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3a thì thiết diện thu được là một hình vuông. Thể tích của khối trụ đã cho bằng? + Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác vuông cân tại A, AB = AC = 3a và AA’ = 2a. Hình chiếu vuông góc của B lên mặt đáy là điểm H thuộc cạnh BC sao cho HC = 2HB. Khoảng cách từ điểm B đến mặt phẳng (B’AC) bằng? + Anh Nam mua một chiếc ô tô trị giá 700 triệu đồng với hình thức trả góp. Anh Nam trả trước 500 triệu đồng và phải chịu lãi suất 0,75% / tháng đối với số tiền còn nợ. Mỗi tháng, anh Nam trả một số tiền không đổi vào đúng ngày tính lãi. Hỏi số tiền không đổi mà anh Nam phải trả mỗi tháng là bao nhiêu, biết rằng sau đúng ba năm thì anh Nam trả hết nợ (làm tròn đến hàng nghìn)?
Đề đánh giá chất lượng lớp 12 môn Toán năm 2020 2021 trường Đại học Hồng Đức Thanh Hóa
Nội dung Đề đánh giá chất lượng lớp 12 môn Toán năm 2020 2021 trường Đại học Hồng Đức Thanh Hóa Bản PDF Đề đánh giá chất lượng Toán lớp 12 năm học 2020 – 2021 trường Đại học Hồng Đức – Thanh Hóa được biên soạn theo hình thức đề 100% trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề đánh giá chất lượng Toán lớp 12 năm 2020 – 2021 trường Đại học Hồng Đức – Thanh Hóa : + Ông Đức gửi ngân hàng số tiền 500.000.000 đồng loại kỳ hạn 6 tháng với lãi suất 5,6% trên một năm theo thể thức lãi kép (tức là nếu đến kỳ hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kỳ kế tiếp). Hỏi sau 3 năm 9 tháng ông Đức nhận được số tiền (làm tròn đến hàng nghìn) cả gốc lẫn lãi là bao nhiêu? Biết rằng ông Đức không rút cả gốc lẫn lãi trong các định kỳ trước đó và nếu rút trước kỳ hạn thì ngân hàng trả lãi suất theo loại không kỳ hạn 0,00027% trên một ngày. (Một tháng tính 30 ngày). A 606.627.000 đồng. B 623.613.000 đồng. C 606.775.000 đồng. D 611.764.000 đồng. + Gọi S là tập hợp tất cả các số thực m sao cho đồ thị hàm số y = |2×4 − 4(m − 1)x2 − m2 + 3m − 2| có đúng 5 cực trị. Số phần tử m ∈ [−2021;2021] ∩ S có giá trị nguyên là? + Giả sử tồn tại số thực m sao cho phương trình ex − e−x = 2cosmx có 2021 nghiệm thực phân biệt. Số nghiệm phân biệt của phương trình ex + e−x = 2cosmx+4 là?