Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát đội tuyển HSGQG Toán năm 2022 2023 chuyên Lê Quý Đôn Điện Biên

Nội dung Đề khảo sát đội tuyển HSGQG Toán năm 2022 2023 chuyên Lê Quý Đôn Điện Biên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi khảo sát đội dự tuyển học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 trường THPT chuyên Lê Quý Đôn, tỉnh Điện Biên; kỳ thi được diễn ra vào thứ Sáu ngày 26 tháng 08 năm 2022. Trích dẫn đề khảo sát đội tuyển HSGQG Toán năm 2022 – 2023 chuyên Lê Quý Đôn – Điện Biên : + Cho tam giác nhọn ABC không cân tại A, có trực tâm H. Từ B kẻ đường thẳng vuông góc với AC, cắt đường tròn đường kính AC tại hai điểm D và E (D nằm giữa E và B) đồng thời cắt đường thẳng AC tại K. Từ C kẻ đường thẳng vuông góc với AB, cắt đường tròn đường kính AB tại hai điểm F và G (F nằm giữa C và G) đồng thời cắt đường thẳng AB tại L. a) Chứng minh rằng bốn điểm D, F, E, G cùng nằm trên một đường tròn. b) Giả sử KL giao BC tại I. Từ B kẻ đường thẳng vuông góc với AI và cắt đường thẳng LC tại J. Chứng minh rằng H là trung điểm đoạn thẳng CJ. + Cho 2022 số nguyên dương a1, a2, …, a2022 bất kỳ. Có tồn tại hay không vô hạn số nguyên dương n >= 2022 thỏa mãn dãy 2022 số đều là hợp số không? + Cho bảng ô vuông kích thước 100×100 mà mỗi ô được điền một trong các ký tự A, B, C, D sao cho trên mỗi hàng, mỗi cột của bảng thì số lượng ký tự từng loại đúng bằng 25. Ta gọi hai ô thuộc cùng hàng (không nhất thiết kề nhau) nhưng được điền khác ký tự là “cặp tốt”, còn hình chữ nhật có các cạnh song song với bảng và bốn đỉnh của nó được điền đủ bốn ký tự A, B, C, D là “bảng tốt”. a) Hỏi trong các cách điền ở trên, có bao nhiêu cách điền mà mỗi bảng ô vuông 1×4, 4×1 và 2×2 đều có chứa đủ các ký tự A, B, C, D? b) Chứng minh rằng với mọi cách điền thỏa mãn đề bài thì trên bảng ô vuông đã cho: i) Luôn có 2 cột của bảng mà từ đó có thể chọn ra được 76 cặp tốt. ii) Luôn có một bảng tốt.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG tỉnh Toán 12 năm 2020 - 2021 sở GDĐT Thừa Thiên Huế
Thứ Ba ngày 19 tháng 01 năm 2021, sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 hệ THPT năm học 2020 – 2021. Đề thi chọn HSG tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Thừa Thiên Huế gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian cán bộ coi thi phát đề). Trích dẫn đề thi chọn HSG tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Thừa Thiên Huế : + Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập từ các chữ số 0, 1, 2, 3, 4, 5. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn là một số chẵn. + Cho phương trình: (2m + 3).16^x – (4m – 2).4^x + 3m – 8 = 0 (1) với m là tham số thực. a) Giải phương trình khi m = 3. b) Tìm các giá trị của tham số m để phương trình (1) có hai nghiệm trái dấu. + Cho hình chóp S.ABCD có cạnh SA = x, tất cả các cạnh còn lại có độ dài bằng 1. Gọi H là hình chiếu của S lên mặt phẳng đáy ABCD. a) Chứng minh rằng SA vuông góc với SC. b) Tính diện tích đáy ABCD theo x của hình chóp S.ABCD. c) Xác định x để khối chóp S.ABCD có thể tích lớn nhất. Tính giá trị thể tích lớn nhất đó.
Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 - 2021 sở GDĐT Lào Cai
Sáng thứ Hai ngày 18 tháng 01 năm 2021, sở Giáo dục và Đào tạo tỉnh Lào Cai tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh THPT môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 – 2021 sở GD&ĐT Lào Cai gồm 05 bài toán dạng tự luận, thời gian thí sinh làm bài thi là 180 phút, thí sinh không được sử dụng tài liệu và máy tính cầm tay khi làm bài. Trích dẫn đề thi học sinh giỏi tỉnh Toán THPT năm 2020 – 2021 sở GD&ĐT Lào Cai : + Cho tập S = {1; 2; 3; … ; 2016}. a) Hỏi có bao nhiêu tập con gồm 3 phần tử khác nhau chọn từ tập S, sao cho 3 số được chọn là độ dài 3 cạnh của một tam giác mà cạnh lớn nhất độ dài là 1000. b) Chọn ngẫu nhiên 3 số khác nhau từ tập S. Tính xác suất sao cho 3 số được chọn là độ dài 3 cạnh của một tam giác mà cạnh lớn nhất độ dài là số chẵn. + Cho hình chóp tứ giác đều S.ABCD biết AB = a, góc giữa hai mặt phẳng (SBC0 và (ABCD) bằng 60°. a) Tính khoảng cách giữa hai đường thẳng chéo nhau AB và SC. b) Lấy các điểm M, P lần lượt thuộc cạnh AD, SC sao cho AM/AD = 1/2, SP/SC = 3/5. Gọi N là giao điểm của SD với mặt phẳng (BMP). Tính thể tích của khối đa diện SABMNP. + Tìm tất cả các giá trị của tham số m để phương trình log2 (2x + m) – 2log2 x = x2 – 4x – 2m – 1 có hai nghiệm thực phân biệt.
Đề thi học sinh giỏi Toán 12 năm 2020 - 2021 sở GDĐT tỉnh Đồng Nai
Thứ Sáu ngày 15 tháng 01 năm 2021, sở Giáo dục và Đào tạo tỉnh Đồng Nai tổ chức kỳ thi chọn học sinh và học viên giỏi môn Toán lớp 12 THPT và GDTX năm học 2020 – 2021. Đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT tỉnh Đồng Nai gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian cán bộ coi thi phát đề), thí sinh được phép sử dụng máy tính cầm tay nhưng không được phép sử dụng tài liệu khi làm bài. Trích dẫn đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT tỉnh Đồng Nai : + Một chiếc hộp đựng 20 viên bi giống nhau, mỗi viên bi được ghi một trong các số tự nhiên từ 1 đến 20 (không có hai viên bi ghi cùng một số). Bốc ngẫu nhiên 4 viên bi từ chiếc hộp nói trên, tính xác suất để tổng các số ghi trên các viên bi chia hết cho 3. + Bạn An làm hai cái bánh là hai khối trụ bằng nhau có tổng thể tích bằng 144pi cm3 và dùng giấy carton làm một cái hộp hình hộp chữ nhật (có đủ 6 mặt) để đựng vừa khít hai cái bánh như hình vẽ. Tính diện tích nhỏ nhất của giấy carton dùng trong việc nêu trên. + Cho hình chóp S.ABC có AB = AC = 10a, BC = 12a (với 0 < a thuộc R), hình chiếu vuông góc của đỉnh S lên mặt phẳng đáy trùng với tâm O của đường tròn ngoại tiếp tam giác ABC, góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60°. 1) Tính theo a diện tích của mặt cầu ngoại tiếp hình chóp S.ABC. 2) Gọi hai điểm D, E lần lượt thuộc hai cạnh AB, BC thỏa mãn AD.BE = 60a2. Tính theo a thể tích của khối chóp S.ADE.
Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 - 2021 sở GDĐT Hưng Yên
Sáng thứ Ba ngày 12 tháng 01 năm 2021, sở Giáo dục và Đào tạo tỉnh Hưng Yên tổ chức kỳ thi chọn học sinh giỏi (HSG) môn Toán bậc THPT cấp tỉnh năm học 2020 – 2021. Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 – 2021 sở GD&ĐT Hưng Yên gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian cán bộ coi thi phát đề), học sinh không được sử dụng máy tính cầm tay khi làm bài. Trích dẫn đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 – 2021 sở GD&ĐT Hưng Yên : + Cho điểm A nằm trên mặt cầu (S) tâm O, bán kính R = 9 cm. Gọi I, K là hai điểm trên đoạn OA sao cho OI = IK = KA. Các mặt phẳng lần lượt đi qua I, K cùng vuông góc với OA và cắt mặt cầu (S) theo đường tròn (C1), (C2). Gọi V1 , V2 lần lượt là thể tích khối nón đỉnh O, đáy là đường tròn (C1), (C2). Tính tỉ số V1/V2. + Gọi S là tập các số tự nhiên có 4 chữ số đôi một khác nhau lập từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn chia hết cho 3. + Cho lăng trụ ABC.A’B’C’ có đáy là tam giác vuông tại A, AB = AC = a (a > 0), biết B’A = B’B = B’C; góc giữa hai mặt phẳng (BCC’B’) và (ABB’A’) bằng x với tan x = 5/2√2. Tính khoảng cách giữa hai đường thẳng A’C’ và B’C.