Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lần 3 lớp 11 môn Toán năm 2020 2021 trường THPT Nguyễn Viết Xuân Vĩnh Phúc

Nội dung Đề KSCL lần 3 lớp 11 môn Toán năm 2020 2021 trường THPT Nguyễn Viết Xuân Vĩnh Phúc Bản PDF Ngày … tháng 03 năm 2021, trường THPT Nguyễn Viết Xuân, huyện Vĩnh Tường, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 11 năm học 2020 – 2021 lần thứ ba. Đề KSCL lần 3 Toán lớp 11 năm 2020 – 2021 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc mã đề 019 gồm 04 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề KSCL lần 3 Toán lớp 11 năm 2020 – 2021 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc : + Tung một con xúc sắc không đồng chất thì xác suất xuất hiện mặt hai chấm và ba chấm lần lượt gấp hai và ba lần xác suất xuất hiện các mặt còn lại, xác suất xuất hiện các mặt còn lại như nhau. Xác suất để sau 7 lần tung có đúng 3 lần xuất hiện số mặt chẵn và 4 lần xuất hiện số mặt lẻ gần bằng số nào sau đây? + Cho tứ diện ABCD. Trên các cạnh AD, BC theo thứ tự lấy các điểm M, N sao cho AM/AD = NC/BC = 1/3. Gọi (P) là mặt phẳng chứa MN và song song với CD. Khi đó mặt phẳng (P) cắt tứ diện ABCD theo thiết diện là? A. Hình bình hành. B. Hình thang có đáy lớn gấp 3 lần đáy nhỏ. C. Hình thang có đáy lớn gấp 2 lần đáy nhỏ. D. Hình tam giác. + Cho tứ diện ABCD có tất cả các cạnh bằng a, I là trung điểm của AC, J là một điểm trên cạnh AD sao cho AJ = 2JD. (P) là mặt phẳng chứa IJ và song song với AB. Tính diện tích thiết diện khi cắt tứ diện bởi mặt phẳng (P). File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề KSCL đội tuyển HSG Toán 11 năm 2017 - 2018 trường THPT Yên Lạc 2 - Vĩnh Phúc
Đề KSCL đội tuyển HSG Toán 11 năm 2017 – 2018 trường THPT Yên Lạc 2 – Vĩnh Phúc gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 180 phút, không kể thời gian phát đề, nội dung đề thi bao gồm các chủ đề: lượng giác, cấp số cộng và cấp số nhân, nhị thức Newton, xác suất, giới hạn, hình học tọa độ trong mặt phẳng Oxy, vectơ, hình học không gian, min – max, đề thi HSG Toán 11 có lời giải chi tiết . Trích dẫn đề KSCL đội tuyển HSG Toán 11 năm 2017 – 2018 : + Một tứ giác có bốn góc tạo thành một cấp số nhân và số đo góc lớn nhất gấp 8 lần số đo góc nhỏ nhất. Tính số đo các góc của tứ giác trên. + Cho hình đa giác đều H có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình H. Tính xác suất để 4 đỉnh chọn được tạo thành một hình chữ nhật không phải là hình vuông? [ads] + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và các cạnh bên đều bằng a. Gọi M là điểm nằm trên SB sao cho vtSM = 1/3.vtSB. a. Gọi (P) là mặt phẳng chứa CM và song song với SA. Tính theo a diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD. b. E là một điểm thay đổi trên cạnh AC. Xác định vị trí điểm E để ME vuông góc với CD.
Đề khảo sát lần 2 Toán 11 năm 2023 - 2024 trường THPT Kẻ Sặt - Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng lần 2 môn Toán 11 năm học 2023 – 2024 trường THPT Kẻ Sặt, tỉnh Hải Dương. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát lần 2 Toán 11 năm 2023 – 2024 trường THPT Kẻ Sặt – Hải Dương : + Có 2 hộp đựng các viên bi. Hộp thứ nhất chứa 3 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh. Hộp thứ hai chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh (các viên bi kích thước như nhau). Chọn ngẫu nhiên mỗi hộp một viên bi. a) Số phần tử của không gian mẫu là 270. b) Có 21 cách để hai viên bi lấy ra đều là màu trắng. c) Xác xuất để chọn được 2 viên bi trong đó một viên màu đỏ, một viên màu xanh là 1 7. d) Xác xuất để chọn được 2 bi khác màu là 9 28. + Ruồi giấm được thả vào bình sữa nửa lít cùng với một quả chuối (để làm thức ăn) và cây men (để làm thức ăn và để kích thích đẻ trứng). Giả sử rằng số lượng ruồi đục quả sau t ngày được cho bởi công thức. Mất bao lâu để trong bình có 180 con ruồi giấm? + Cả hai xạ thủ cùng bắn vào bia. Xác suất người thứ nhất bắn trúng bia là 0,8; người thứ hai bắn trúng bia là 0,7. Tính xác suất để có ít nhất một người bắn trúng bia.
Đề kiểm tra lần 1 Toán 11 năm 2023 - 2024 trường THPT Hùng Vương - Bình Phước
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra chất lượng lần 1 môn Toán 11 năm học 2023 – 2024 trường THPT Hùng Vương, tỉnh Bình Phước. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án và hướng dẫn chấm điểm.
Đề khảo sát lần 2 Toán 11 năm 2023 - 2024 trường THPT Lục Nam - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng lần 2 môn Toán 11 năm học 2023 – 2024 trường THPT Lục Nam, tỉnh Bắc Giang; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát lần 2 Toán 11 năm 2023 – 2024 trường THPT Lục Nam – Bắc Giang : + Trong một cuộc khảo sát số bạn yêu thích môn Toán và môn Tiếng Anh ở trường THPT Lục Nam, người ta chọn ngẫu nhiên một em học sinh ở trường THPT Lục Nam. Xét các biến cố sau: A : “Học sinh đó yêu thích môn Toán” B : “Học sinh đó yêu thích môn Tiếng Anh” C: “Học sinh đó yêu thích môn Toán và yêu thích môn Tiếng Anh”. Mệnh đề nào sau đây là mệnh đề đúng? + Trong đợt thi kiểm tra giữa học kỳ 2 vừa qua, đề thi môn Toán làm theo cấu trúc mới của dạng đề minh họa thi TN 2025. Đề thi có 3 phần: PHẦN I-Câu hỏi trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12, mỗi câu hỏi thí sinh chỉ chọn một phương án, trả lời đúng mỗi câu được 0,25 điểm. PHẦN II-Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai. Trong mỗi câu: Trả lời đúng một ý được 0,1 điểm, trả lời đúng hai ý được 0,25 điểm, trả lời đúng ba ý được 0,5 điểm, trả lời đúng cả bốn ý được 1 điểm và PHẦN III-Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6, mỗi câu trả lời đúng được 0,5 điểm. Bạn An tham gia thi và đã chắc chắn làm được 8 điểm, chỉ còn hai câu là Câu 3 và Câu 4 ở PHẦN II bạn không hiểu (do bạn nghỉ học hôm lớp học nội dung đó) nên bạn chọn ngẫu nhiên đúng, sai tất cả các ý của hai câu này. Tính xác suất để bài thi của bạn An đạt trên 9 điểm. + Cho hình chóp tứ giác đều S.ABCD. Chọn khẳng định sai trong các khẳng định sau : A. Chiều cao của hình chóp bằng độ dài đoạn thẳng SA. B. Hình chiếu của đỉnh trên mặt phẳng đáy là tâm của mặt đáy. C. Đáy ABCD là hình vuông. D. Các cạnh bên của hình chóp bằng nhau.