Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 trường PTNK TP HCM

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 trường PTNK TP HCM Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 trường PTNK TP HCM Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 trường PTNK TP HCM Chào đón quý thầy cô và các em học sinh lớp 9, đây là đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022-2023 của trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh. Đề thi bao gồm 5 câu tự luận, thời gian làm bài 120 phút (không tính thời gian giao đề). Kỳ thi sẽ diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022. Trích dẫn đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2022-2023 trường PTNK TP HCM: Cho các phương trình $x^2 - 2ax + 3a = 0$ (1) và $x^2 - 4x + a = 0$ (2), với a là tham số. a) Chứng minh rằng ít nhất một trong hai phương trình trên có nghiệm. b) Giả sử cả hai phương trình trên đều có hai nghiệm phân biệt. Gọi T1 và T2 lần lượt là tổng bình phương các nghiệm của (1) và (2). Chứng minh T1 + 5T2 > 68. Cho phương trình $2^x + 5^y = k$ (x, y, k là các số nguyên dương). a) Chứng minh rằng với mọi k, phương trình không có nghiệm (x;y) với y chẵn. b) Tìm k để phương trình có nghiệm. Cho tam giác ABC nhọn có H là trực tâm. Lấy D đối xứng với H qua A. Gọi I là trung điểm CD, đường tròn (I) đường kính CD cắt AB tại các điểm E, F (E thuộc tia AB). a) Chứng minh ECD = FCH và AE = AF. b) Chứng minh H là trực tâm của tam giác CEF. c) Gọi K là giao điểm BH và AC. Chứng minh tứ giác EFKH nội tiếp và EF là tiếp tuyến chung của các đường tròn ngoại tiếp các tam giác CKE và CKF. d) Chứng minh rằng tiếp tuyến tại C của (I) và tiếp tuyến tại K của đường tròn ngoại tiếp tam giác KEF cắt nhau trên đường thẳng AB. Hy vọng rằng đề thi sẽ giúp quý thầy cô và các em học sinh lớp 9 chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới. Chúc tất cả các em đạt kết quả cao trong kỳ thi!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Bình Dương
Thứ Năm ngày 03 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Bình Dương tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Bình Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Bình Dương : + Cho hệ phương trình: 3 2 10 2 x y x y m (m là tham số). 1) Giải hệ phương trình đã cho khi m = 9. 2) Tìm tất cả các giá trị của tham số m để hệ phương trình đã cho có nghiệm x y thỏa x y 0 0. + Cho Parabol 2 P y x và đường thẳng 5 6 d y x. 1) Vẽ đồ thị P. 2) Tìm tọa độ các giao điểm của P và d bằng phép tính. 3) Viết phương trình đường thẳng d biết d song song d và d cắt P tại hai điểm phân biệt có hoành độ lần lượt là 1 2 x x sao cho 1 2 x x 24. + Một khu vườn hình chữ nhật có chiều dài gấp 3 lần chiều rộng. Người ta làm một lối đi xung quanh vườn (thuộc đất trong vườn) rộng 1,5m. Tính kích thước của vườn, biết rằng đất còn lại trong vườn đề trồng trọt là 2 4329 m.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 trường THPT chuyên Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 trường THPT chuyên Hà Tĩnh; kỳ thi được diễn ra vào thứ Năm ngày 03 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 trường THPT chuyên Hà Tĩnh : + Cho x, y là các số thực dương thỏa mãn x + y + xy = 3. Tìm giá trị lớn nhất của biểu thức: P. + Cho nửa đường tròn tâm O đường kính AB. Gọi I là điểm chính giữa của cung AB. Trên cung lớn AB của đường tròn tâm I, bán kính IA, lấy điểm C sao cho tam giác ABC nhọn. Gọi M, N lần lượt là giao điểm của CA, CB với nửa đường tròn đường kính AB (M khác A, N khác B); J là giao điểm của AN với BM. a) Chứng minh MBC và NAC là các tam giác cân. b) Chứng minh I là trực tâm của tam giác CMN. c) Gọi K là trung điểm của IJ, tính tỉ số CJ/OK. + Cho tập hợp X = {1;2;3;4;5;6;7;8;9}, chia tập hợp X thành hai tập hợp khác rỗng và không có phần tử chung. Chứng minh rằng với mọi cách chia thì luôn tồn tại 3 số a, b, c trong một tập hợp thỏa mãn: a + c = 2b.
Đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Hà Tĩnh
Chiều thứ Tư ngày 02 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Hà Tĩnh tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2021 – 2022. Đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Hà Tĩnh gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 90 phút.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT tỉnh Quảng Ninh
Sáng thứ Tư ngày 02 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Ninh tổ chức kỳ thi tuyển sinh vào lớp 10 hệ THPT môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT tỉnh Quảng Ninh (dành cho mọi thí sinh) gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT tỉnh Quảng Ninh : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Lớp 9B có 42 học sinh. Vừa qua lớp đã phát động phong trào tặng sách cho các bạn đang cách ly vì dịch bệnh Covid-19. Tại buổi phát động, mỗi học sinh trong lớp đều tặng 3 quyển sách hoặc 5 quyển sách. Kết quả cả lớp đã tặng được 146 quyển sách. Hỏi lớp 9B có bao nhiêu bạn tặng 3 quyển sách và bao nhiêu bạn tặng 5 quyển sách? + Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (O) (A là tiếp điểm). Qua A kẻ đường thẳng song song với MO, đường thẳng này cắt đường tròn (O) tại C (C khác A). Đường thẳng MC cắt đường tròn (O) tại điểm B (B khác C). Gọi H là hình chiếu của O trên BC. a. Chứng minh tứ giác MAHO nội tiếp. b. Chứng minh AB/AC = MA/MC. c. Chứng minh BAH = 90°. d. Vẽ đường kính AD của đường tròn (O). Chứng minh hai tam giác ACH và DMO đồng dạng. + Cho các số thực không âm a và b. Tìm giá trị nhỏ nhất của biểu thức P.