Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 năm 2023 2024 trường THCS Nguyễn Hữu Thái Hà Tĩnh

Nội dung Đề thi thử Toán vào 10 năm 2023 2024 trường THCS Nguyễn Hữu Thái Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 năm 2023-2024 trường THCS Nguyễn Hữu Thái Hà Tĩnh Đề thi thử Toán vào 10 năm 2023-2024 trường THCS Nguyễn Hữu Thái Hà Tĩnh Các bạn học sinh và quý thầy cô giáo thân mến, hôm nay Sytu xin giới thiệu đến bạn đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023-2024 trường THCS Nguyễn Hữu Thái, tỉnh Hà Tĩnh. Đề thi này sẽ bao gồm đáp án chi tiết và hướng dẫn chấm điểm để giúp các em rèn luyện và nâng cao kiến thức Toán của mình. Trích dẫn một số câu hỏi trong đề thi: Tháng giêng hai tổ sản xuất được 1000 chi tiết máy; tháng hai do cải tiến kỹ thuật tổ I vượt mức 15% và tổ II vượt mức 10% so với tháng giêng, vì vậy hai tổ đã sản xuất được 1120 chi tiết máy. Hỏi tháng giêng mỗi tổ sản xuất được bao nhiêu chi tiết máy? Cho tam giác ABC vuông tại A có đường cao AH (H thuộc BC). Biết AC = 6cm và ∠ACB = 30°. Tính độ dài đoạn thẳng BC và diện tích tam giác AHB. Từ điểm S nằm ngoài đường tròn (O), kẻ hai tiếp tuyến SA, SB với đường tròn (A, B là các tiếp điểm). M là điểm bất kì trên cung nhỏ AB (M ∈ AB). Gọi D, E, F tương ứng là hình chiếu vuông góc của M trên các đường thẳng SA, SB, AB. a) Chứng minh tứ giác MEBF là các tứ giác nội tiếp. b) Chứng minh DF là tiếp tuyến của đường tròn đường kính MB. Hy vọng rằng đề thi này sẽ giúp các em ôn tập hiệu quả và chuẩn bị tốt cho kì thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 lần 2 năm 2022 - 2023 phòng GDĐT Trực Ninh - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Trực Ninh, tỉnh Nam Định; đề thi được biên soạn theo cấu trúc 20% trắc nghiệm và 80% tự luận (tính theo điểm số), thời gian làm bài 120 phút (không kể thời gian phát đề). Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2022 – 2023 phòng GD&ĐT Trực Ninh – Nam Định : + Cho phương trình x2 – 6x + m + 3 = 0 (1) (với m là tham số) 1) Giải phương trình khi m = -2. 2) Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm phân biệt x1 và x2 thỏa mãn x2 = x12. + Cho tam giác ABC vuông cân tại A có AB = 6cm. Gọi I là trung điểm của AC, qua I kẻ đường thẳng song song với AB cắt BC tại K. Vẽ cung tròn (B; BK), cung tròn này cắt AB tại P (hình vẽ). Tính diện tích phần tô đậm (kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho đường tròn (O; R) và điểm A nằm ở bên ngoài đường tròn. Từ A vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm). Qua điểm B vẽ dây cung BD của (O) sao cho BD song song với AO. Gọi C là giao điểm thứ hai của AD với (O) (C khác D). Vẽ OH vuông góc với CD (H thuộc CD). a) Chứng minh tứ giác ABHO nội tiếp đường tròn và OBH = BDH b) Từ C vẽ đường thẳng song song với BH, cắt (O) tại điểm thứ hai E (E khác B). Gọi S là diện tích tam giác CBE. Chứng minh: S =< R2.
Đề thi thử Toán vào 10 lần 3 năm 2022 trường THCS Quỳnh Mai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán 9 ôn tập tuyển sinh vào lớp 10 THPT lần 3 năm học 2021 – 2022 trường THCS Quỳnh Mai, quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022. Trích dẫn đề thi thử Toán vào 10 lần 3 năm 2022 trường THCS Quỳnh Mai – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: 1) Một mảnh vườn hình chữ nhật có diện tích 216m2. Nếu giảm chiều rộng 2m và tăng chiều dài 2m thì diện tích mảnh vườn giảm 16m2. Tính chiều dài và chiều rộng ban đầu của mảnh vườn. + Một cái bồn chứa xăng gồm hai nửa hình cầu và một hình trụ. Hãy tính thể tích của bồn chứa theo các kích thước cho trên hình vẽ (lấy pi = 3,14; làm tròn kết quả đến chữ số thập phân thứ ba). + Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x – 2m + 3. a) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1 và x2. b) Tìm m để hoành độ giao điểm thỏa mãn: x1 =< 0 < x2.
Đề thi vào 10 môn Toán (chuyên) 2022 - 2023 trường chuyên Hoàng Văn Thụ - Hoà Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Hoàng Văn Thụ, tỉnh Hoà Bình (đề thi dành cho thí sinh thi vào các lớp chuyên Toán); kỳ thi được diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022. Trích dẫn đề thi vào 10 môn Toán (chuyên) 2022 – 2023 trường chuyên Hoàng Văn Thụ – Hoà Bình : + Một cửa hàng điện máy thực hiện chương trình khuyến mãi giảm giá tất cả các mặt hàng 10% theo giá niêm yết và nếu hóa đơn khách hàng trên 10 triệu sẽ được giảm thêm 2% số tiền trên hóa đơn, hóa đơn trên 15 triệu sẽ được giảm thêm 4% số tiền trên hóa đơn, hóa đơn trên 40 triệu sẽ được giảm thêm 8% số tiền trên hóa đơn. Ông An muốn mua một ti vi với giá niêm yết là 9 200 000 đồng và một tủ lạnh với giá niêm yết là 7 100 000 đồng. Hỏi với chương trình khuyến mãi của cửa hàng, ông An phải trả bao nhiêu tiền? + Cho tam giác ABC vuông tại B (BC AB) nội tiếp trong đường tròn tâm O đường kính AC R 2. Kẻ dây cung BD vuông góc với AC, H là giao điểm của AC và BD. Trên HC lấy điểm E sao cho E đối xứng với A qua H. Đường tròn tâm O’ đường kính EC cắt đoạn BC tại I (I khác C). 1) Chứng minh rằng: CI CA CE CB. 2) Chứng minh rằng: Ba điểm D, I, E thẳng hàng. 3) Chứng minh rằng: HI là tiếp tuyến của đường tròn đường kính EC. 4) Khi B thay đổi thì H thay đổi, xác định vị trí của H trên AC để diện tích tam giác O’IH lớn nhất. + Cho phương trình: 2 x mx m 2 2 1 0 (m là tham số). Tìm m để phương trình có hai nghiệm dương.
Đề thi vào 10 môn Toán (chung) 2022 - 2023 trường chuyên Hoàng Văn Thụ - Hoà Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022 – 2023 trường THPT chuyên Hoàng Văn Thụ, tỉnh Hoà Bình (đề thi dành cho tất cả các thí sinh); kỳ thi được diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022. Trích dẫn đề thi vào 10 môn Toán (chung) 2022 – 2023 trường chuyên Hoàng Văn Thụ – Hoà Bình : + Một ô tô đi từ A và dự định đến B lúc 11 giờ trưa. Nếu xe chạy với vận tốc 40 km/h thì sẽ đến B chậm 1 giờ so với dự định. Nếu xe chạy với vận tốc 50 km/h thì sẽ đến B sớm 24 phút so với dự định. Tính độ dài quãng đường AB và thời điểm dự định xuất phát của ô tô tại A. + Cho đường tròn O một đường thẳng d không đi qua tâm O cắt đường tròn O tại hai điểm phân biệt M và N. Lấy điểm A tùy ý thuộc d và nằm ngoài đường tròn O AM AN. Qua A vẽ hai tiếp tuyến AB và AC của đường tròn O (B và C là các tiếp điểm). Gọi D là giao điểm của AO và BC. 1) Chứng minh rằng: Tứ giác OBAC là tứ giác nội tiếp. 2) Chứng minh rằng: 2 AB AM AN. 3) Chứng minh rằng: ADM ANO. 4) Chứng minh rằng khi A thay đổi (A thuộc d và nằm ngoài đường tròn O AM AN) thì đường thẳng BC luôn đi qua một điểm cố định. + Cho tam giác ABC vuông tại A, đường cao AH, biết AB cm 6 AC cm 8. Tính độ dài AH, BH, CH.