Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 11 môn Toán lần 1 năm 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc

Nội dung Đề KSCL lớp 11 môn Toán lần 1 năm 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc Bản PDF Ngày … tháng 11 năm 2019, trường THPT Đồng Đậu, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 11 lần thứ nhất giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề KSCL Toán lớp 11 lần 1 năm 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc mã đề 111, đề được biên soạn theo dạng đề tự luận với 11 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề KSCL Toán lớp 11 lần 1 năm 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc : + Đề thi khảo sát môn Toán của học sinh khối 11 trường THPT Đồng Đậu – Vĩnh Phúc gồm hai phần đề tự luận và trắc nghiệm. Mỗi học sinh dự thi phải thực hiện giải 2 phần đề gồm một phần tự luận và một phần trắc nghiệm. Trong đó tự luận có 12 đề, trắc nghiệm có 15 đề. Hỏi mỗi học sinh có bao nhiêu cách chọn đề thi gồm tự luận và trắc nghiệm? [ads] + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24g hương liệu, 9 lít nước và 210g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30 gam đường, 1 lít nước và 1 gam hương liệu; pha chế 1 lít nước táo cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng. Mỗi lít nước táo được 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước trái cây mỗi loại để được số điểm thưởng là lớn nhất? + Trong mặt phẳng Oxy, cho điểm N (-2;3). Tìm ảnh của điểm N khi thực hiện liên tiếp phép tịnh tiến theo vectơ v(1;-1) và phép vị tự tâm I tỉ số 2 với I(1;2). File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Khảo sát chuyên đề Toán 11 lần 1 năm học 2017 - 2018 trường Nguyễn Thị Giang - Vĩnh Phúc
Đề thi khảo sát chuyên đề Toán 11 lần 1 năm học 2017 – 2018 trường THPT Nguyễn Thị Giang – Vĩnh Phúc gồm 6 mã đề, mỗi mã đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Trong những khẳng định sau đây, khẳng định nào sai? A. Hàm số y = cotx nghịch biến trên khoảng (0; π/2) B. Hàm số y = sinx là hàm tuần hoàn với chu kì 2π C. Hàm số y = cos(x^3) là hàm số chẵn D. Hàm số y = tanx đồng biến trên khoảng (0; π) [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: 2x – y + 1 = 0 và véctơ v = (2; -3). Phép tịnh tiến theo véctơ v biến d thành d’. Phương trình đường thẳng d’ là: A. 2x – 3y + 1 = 0 B. 2x – y – 7 = 0 C. 2x – y + 6 = 0 D. 2x – y – 6 = 0 + Để có được đồ thị hàm số y = cosx, ta thực hiện phép tịnh tiến đồ thị hàm số y = sinx: A. Sang phải π đơn vị B. Sang trái 2π đơn vị C. Sang phải 2π đơn vị D. Sang trái π đơn vị
Đề kiểm tra chất lượng lần 1 năm học 2017 - 2018 môn Toán 11 trường THPT chuyên Thái Bình
Đề kiểm tra chất lượng lần 1 năm học 2017 – 2018 môn Toán 11 trường THPT chuyên Thái Bình gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + 3: Xét các mệnh đề sau đây: (I): Có một và chỉ một mặt phẳng đi qua ba điểm phân biệt (II): Có một và chỉ một mặt phẳng chứa hai đường thẳng cắt nhau (III): Nếu hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất đi qua điểm chung đó (IV): Tồn tại bốn điểm không cùng thuộc một mặt phẳng Số mệnh đề đúng là: A. 2 B. 1 C. 3 D. 4 [ads] + Xét các mệnh đề sau đây: (I): Hai đường thẳng lần lượt nằm trên hai mặt phẳng song song thì song song (II): Hai đường thẳng lần lượt nằm trên hai mặt phẳng song song thì chéo nhau (III): Một đường thẳng bất kì nằm trên một trong hai mặt phẳng song song thì song song với mặt phẳng còn lại (IV): Bất kì một đường thẳng nào cắt một trong hai mặt phẳng song song thì nó cũng cắt mặt phẳng còn lại Số mệnh đề sai là: A. 0 B. 2 C. 3 D. 1 + Trong không gian cho ba đường thẳng a, b, c phân biệt. Trong các mệnh đề sau đây, mệnh đề nào sai? A. Nếu a, b, c đồng phẳng, a // b và c cắt a thì c cắt b B. Nếu a, b, c đôi một cắt nhau thì chúng đồng phẳng C. Nếu a // b thì có duy nhất một mặt phẳng chứa cả a và b D. Nếu a // c và b // c thì a // b
Đề khảo sát ôn thi THPT Quốc gia lần 1 môn Toán 11 trường THPT Bình Xuyên - Vĩnh Phúc
Đề khảo sát ôn thi THPT Quốc gia lần 1 môn Toán 11 trường THPT Bình Xuyên – Vĩnh Phúc gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án . Trích dẫn đề thi : + Khẳng định nào sai? A. Phép tịnh tiến biến đoạn thẳng thành đoạn thẳng bằng nó B. Phép tịnh tiến biến tam giác thành tam giác bằng nó C. Phép quay biến đường tròn thành đường tròn có cùng bán kính D. Phép quay biến đường thẳng thành đường thẳng song song hoặc trùng với nó [ads] + Với M, N, H lần lượt là các điểm thuộc vào các cạnh AC, BC, SA, sao cho MN không song song AB. Gọi O là giao điểm của hai đường thẳng AN với BM. Gọi T là giao điểm đường NH và (SBO). Khẳng định nào sau đây là khẳng định đúng? A. T là giao điểm của hai đường thẳng SO với HM B. T là giao điểm của hai đường thẳng NH với BM C. T là giao điểm của hai đường thẳng NH với SB D. T là giao điểm của hai đường thẳng NH với SO + Tính chất nào sau đây không phải là tính chất của phép dời hình? A. Biến đường tròn thành đường tròn có cùng bán kính B. Biến tam giác thành tam giác bằng nó, biến tia thành tia C. Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự của ba điểm đó D. Biến đoạn thẳng thành đoạn thẳng có độ dài gấp k lần đoạn thẳng ban đầu (k ≠ 1)
Đề kiểm định chất lượng lần 1 năm học 2017 - 2018 môn Toán 11 trường THPT Yên Phong 2 - Bắc Ninh
Đề kiểm định chất lượng lần 1 năm học 2017 – 2018 môn Toán 11 trường THPT Yên Phong 2 – Bắc Ninh gồm 6 bài toán tự luận và 4 bài toán trắc nghiệm. thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng Oxy, xét phép quay tâm O(0; 0), góc quay 90 độ, biến điểm M(-3; 0) thành điểm M’. Tìm tọa độ điểm M’. A. M’ (-3;0) B. M’ (3; 0) C. M’ (0; -3) D. M’ (0; 3) [ads] + Trong mặt phẳng Oxy, cho điểm A(4;5), vectơ v = − (1; 2) và đường thẳng d: 2x – y – 3 = 0. a) Tìm tọa độ điểm A’ là ảnh của A qua phép tịnh tiến theo vectơ v. b) Viết phương trình đường thẳng d ‘ là ảnh của d qua phép tịnh tiến theo vectơ v. + Trên giá sách có 10 quyển sách khác nhau, gồm 3 quyển sách Toán, 3 quyển sách Ngữ văn, 4 quyển sách Tiếng Anh. a) Có bao nhiêu cách lấy ra 3 quyển sách thuộc 3 môn khác nhau từ 10 quyển sách đó? b) Có bao nhiêu cách lấy ra 2 quyển sách thuộc 2 môn khác nhau từ 10 quyển sách đó?