Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán 9 năm 2022 - 2023 sở GDĐT Nam Định

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nam Định; kỳ thi được diễn ra vào thứ Sáu ngày 10 tháng 03 năm 2023. Trích dẫn Đề thi chọn học sinh giỏi Toán 9 năm 2022 – 2023 sở GD&ĐT Nam Định : + Cho tam giác nhọn ABC với AB < AC nội tiếp đường tròn(O). Gọi BH và CQ là hai đường cao của tam giác ABC. Tiếp tuyến tại B và tại C của đường tròn (O) cắt nhau tại M. Đoạn thẳng OM cắt BC và cắt đường tròn (O) lần lượt tại N và D. Tia AD cắt BC tại F; AM cắt BC tại E và cắt đường tròn (O) tại điểm thứ hai là K (K khác A). 1) Chứng minh rằng: AB.KC = AC.KB và ABM = AHN. 2) Gọi I là tâm đường tròn ngoại tiếp tam giác AFN. Chứng minh IOM + ADN = 180. 3) Qua E kẻ đường thẳng vuông góc với BC cắt QH tại G. Chứng minh ba điểm A, G, N thẳng hàng. + Lấy 2018 điểm phân biệt ở miền trong của một ngũ giác lồi cùng với 5 đỉnh của ngũ giác đó ta được 2023 điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Biết diện tích của ngũ giác là 1 đơn vị. Chứng minh rằng tồn tại một tam giác có 3 đỉnh lấy từ 2023 điểm đã cho có diện tích không vượt quá 1/4039 đơn vị. + Xét a, b, c là các số thực dương thỏa mãn a + b + c >= 3. Hãy tìm giá trị lớn nhất của biểu thức Q.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Thái Hòa - Nghệ An
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Thái Hòa – Nghệ An gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi học sinh giỏi huyện Toán 9 năm 2021 - 2022 phòng GDĐT Như Thanh - Thanh Hoá
Đề thi học sinh giỏi huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Như Thanh – Thanh Hoá gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Như Thanh – Thanh Hoá : + Tìm tất cả số nguyên tố p sao cho 4p2 + 1 và 6p2 + 1 đều là các số nguyên tố. + Cho nửa đường tròn tâm O đường kính AB = 2R. EF là dây cung di động trên nửa đường tròn sao cho E thuộc cung AF và EF = AB/2. Gọi H là giao điểm của AF, BE, C là giao điểm của AE, BF, I là giao điểm của CH, AB. 1. Chứng minh rằng tam giác ACI và tam giác ABE đồng dạng với nhau. 2. Đường thẳng AF cắt tiếp tuyến tại B ở N, các tiếp tuyến tại A, F của (O) cắt nhau ở M. Chứng minh: ON MB. 3. Xác định vị trí EF trên nửa đường tròn để tứ giác ABEF có diện tích lớn nhất. + Cho a, b, c là các số thực dương thỏa mãn: abc = 1. Hãy tìm giá trị nhỏ nhất của biểu thức P.
Đề thi chọn học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Gio Linh - Quảng Trị
Đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Gio Linh – Quảng Trị gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Bảy ngày 23 tháng 10 năm 2021. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Gio Linh – Quảng Trị : + Tìm số tự nhiên n sao cho n2 + 2n + 30 là số chính phương. + Cho tứ giác ABCD. Qua B, vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt DC tại E. Chứng minh rằng: Diện tích tam giác ADE bằng diện tích tứ giác ABCD. + Cho tam giác ABC có AB < AC, phân giác AD. Gọi E là trung điểm của BC. Qua E, vẽ đường thẳng song song với DA, đường thẳng này cắt các đường thẳng AB, AC lần lượt tại G và F. Chứng minh rằng: BG = FC.
Đề thi HSG Toán 9 cấp huyện năm 2021 - 2022 phòng GDĐT Tân Kỳ - Nghệ An
Đề thi HSG Toán 9 cấp huyện năm 2021 – 2022 phòng GD&ĐT Tân Kỳ – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Hai ngày 18 tháng 10 năm 2021. Trích dẫn đề thi HSG Toán 9 cấp huyện năm 2021 – 2022 phòng GD&ĐT Tân Kỳ – Nghệ An : + a) Chứng minh rằng với mọi số tự nhiên n thì n3 + 11n chia hết cho 6. b) Giải phương trình c) Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: x2 – y2 = 4x + 3. + Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Đường thẳng vuông góc với BC tại B cắt AC tại D. a) Chứng minh rằng: AH2 = HB.HC và BH.BC = AD.AC. b) Chứng minh c) Cho góc nhọn a và sin a = 2/3. Tính P. + Cho 7 điểm phân biệt nằm bên trong hình vuông ABCD có cạnh bằng 10. Chứng minh rằng có ít nhất một điểm trong hình vuông đã cho (có thể nằm trên cạnh của hình vuông) sao cho khoảng cách từ nó đến 7 điểm đã cho đều lớn hơn 2,5.