Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Hà Nam

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Hà Nam : + Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x2 và đường thẳng (d) có phương trình y = 2mx – m2 – m − 2 (với m là tham số). 1. Tìm tọa độ điểm M thuộc (P) biết điểm M có hoành độ bằng –3. 2. Tìm điều kiện của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt. Gọi A(x1;y1), B(x2;y2) là hai giao điểm của đường thẳng (d) và parabol (P), xác định m để x1y2 + x2y1 = 2m3 + 6. + Trong tháng 4 năm 2023, hai hộ gia đình bác An và bác Bình dùng hết tổng cộng 500 nghìn đồng tiền điện. Sang tháng 5 năm 2023, do tăng cường thực hiện việc sử dụng điện an toàn, tiết kiệm và hiệu quả; nhà bác An giảm được 15% tiền điện và nhà bác Bình giảm được 10% tiền điện; kết quả là cả hai hộ gia đình tiết kiệm được tổng cộng 65 nghìn đồng tiền điện so với tháng 4 năm 2023. Hỏi trong tháng 4 năm 2023, mỗi hộ gia đình dùng hết bao nhiêu đồng tiền điện? + Cho đường tròn (O;R) và một điểm S nằm bên ngoài đường tròn. Kẻ các tiếp tuyến SA, SB với đường tròn (A, B là các tiếp điểm). Một dường thẳng đi qua S (không đi qua tâm O) cắt đường tròn (O;R) tại hai điểm M và N với M nằm giữa S và N. 1. Chứng minh tứ giác SAOB nội tiếp. 2. Chứng minh SB2 = SM.SN. 3. Cho SO = R5 và MN = R2. Gọi E là trung điểm MN. Tính độ dài đoạn thẳng OE và diện tích tam giác SOM theo R. 4. Tiếp tuyến tại M của đường tròn (O;R) cắt SA, SB lần lượt tại P, Q. Gọi giao điểm của OQ, OP với AB lần lượt là I và H. Chứng minh ba đường thẳng OM, QH, PI đồng quy.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 - 2023 sở GDĐT An Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi tác giả Đặng Lê Gia Khánh). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT An Giang : + Cho phương trình bậc hai ẩn 𝑥, 𝑛 là tham số: 𝑛𝑥2 − 2(𝑛 + 1)𝑥 + 𝑛 = 0. a. Tìm 𝑛 để phương trình có hai nghiệm phân biệt 𝑥1; 𝑥2. b. Chứng minh rằng |𝑥1 − 𝑥2| ≤ 2√3 với mọi số 𝑛 nguyên dương. + Cho tam giác 𝐴𝐵𝐶 vuông tại 𝐶 (𝐴𝐶 > 𝐵𝐶), 𝐵𝐶 = 2. Biết rằng đường tròn (𝑂) qua ba điểm 𝐴, 𝐵, 𝑀 (𝑀 là trung điểm của 𝐵𝐶) cắt 𝐴𝐶 tại 𝐿 với 𝐵𝐿 là tia phân giác của góc 𝐴𝐵𝐶. a. Chứng minh 𝐶𝐴. 𝐶𝐿 = 2. b. Chứng minh 𝐴𝐵. 𝐿𝐶 = 𝐵𝐶. 𝐿𝑀. c. Tính độ dài cạnh 𝐴𝐵. + Một nông dân thu hoạch 100 trái dưa lưới có khối lượng trung bình là 1,5 kg. Trong 100 trái này có các trái dưa lưới nặng hơn 1,5 kg có khối lượng trung bình là 1,73 kg, các trái dưa lưới nhẹ hơn 1,5 kg có khối lượng trung bình là 1,33 kg và các trái dưa lưới nặng đúng 1,5 kg. a. Tìm biểu thức liên hệ giữa số trái dưa lưới theo khối lượng của chúng. b. Có ít nhất bao nhiêu trái dưa lưới nặng đúng 1,5 kg?
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Thanh Hóa : + Cho tam giác nhọn ABC có AB AC và nội tiếp đường tròn (O). Gọi H là chân đường cao hạ từ đỉnh A của tam giác ABC và E là hình chiếu vuông góc của điểm B lên đường thẳng AO. 1. Chứng minh AEHB là tứ giác nội tiếp. 2. Chứng minh đường thẳng HE vuông góc với đường thẳng AC. 3. Gọi M là trung điểm của cạnh BC. Tính tỉ số ME MH. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y m x m 2 1 (m là tham số). Tìm m để đường thẳng (d) cắt trục hoành tại điểm có hoành độ bằng 2. + Cho ba số thực dương x, y, z thay đổi thỏa mãn điều kiện xy yz zx xyz 3. Tìm giá trị nhỏ nhất của biểu thức 2 2 2 3 1 1 1 2 x y z Q xyz y z x.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Hà Nam : + Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x2 và đường thẳng (d) có phương trình y = 2mx + 3 – 2m (với m là tham số). 1. Tìm m để đường thẳng (d) đi qua điểm A(2;1). 2. Chứng minh rằng đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt A và B. Gọi x1, x2 lần lượt là hoành độ các điểm A, B. Tìm m để x1, x2 là độ dài hai cạnh của một hình chữ nhật có độ dài đường chéo bằng 14. + Lớp 9A giao cho An đi mua bánh và kẹo để tổ chức liên hoan. An mua tất cả 15 hộp bánh và 5 túi kẹo với số tiền phải trả là 850 nghìn đồng. Biết rằng, giá mỗi hộp bánh là như nhau, giá mỗi túi kẹo là như nhau và giá một hộp bánh hơn giá một túi kẹo là 10 nghìn đồng. Tính giá tiền để mua một hộp bánh và giá tiền để mua một túi kẹo. + Cho đường tròn tâm O có đường kính AB = 2R. Gọi I là trung điểm của đoạn thẳng OA và E là điểm thuộc đường tròn tâm O (E không trùng với A và B). Gọi Ax và By là các tiếp tuyến tại A và B của đường tròn (O) (Ax và By cùng thuộc một nửa mặt phẳng bờ AB có chứa điểm E). Qua điểm E kẻ đường thẳng d vuông góc với E cắt Ax và By lần lượt tại M và N. 1. Chứng minh tứ giác AMEI nội tiếp. 2. Chứng minh ENI = EBI và AE.IN = BE.IM. 3. Gọi P là giao điểm của AE và MI, Q là giao điểm của BE và NI. Chứng minh hai đường thẳng PQ và BN vuông góc với nhau. 4. Gọi F là điểm chính giữa của cung AB không chứa điểm E của đường tròn (O). Tính diện tích tam giác AMN theo R khi ba điểm E, I, F thẳng hàng.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Phú Yên. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Phú Yên : + Tìm m để phương trình x2 – (m + 1)x + m + 3 = 0 (m là tham số) có hai nghiệm x1 và x2 là độ dài hai cạnh AB, AC của tam giác ABC vuông tại A và có BC = 5. + Cho ba đường thẳng cố định a, b, c song song nhau sao cho b nằm giữa và cách đều a và c. Một đường thẳng d cố định, vuông góc với a, lần lượt cắt a, b, c tại A, B, C. Trên đoạn AB lấy điểm I sao cho IA = 2IB. Gọi D là một điểm di động trên c. Trên b lấy điểm E sao cho IE = 1/2.ID. Đường thẳng DE cắt a tại F. a) Lấy điểm H trên đoạn ED sao cho HE = 1/2.HD. Chứng minh rằng FIH = 90°. b) Chứng minh rằng đường thẳng DE luôn tiếp xúc với một đường tròn cố định. + Cho các số nguyên dương x, y, z thỏa (x + y)4 + 5z = 63x. Tính giá trị biểu thức: Q = x + y + z.