Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề quan hệ chia hết trên tập hợp số

Nội dung Chuyên đề quan hệ chia hết trên tập hợp số Bản PDF - Nội dung bài viết Chuyên Đề Quan Hệ Chia Hết trên Tập Hợp Số Chuyên Đề Quan Hệ Chia Hết trên Tập Hợp Số Tài liệu "Chuyên đề quan hệ chia hết trên tập hợp số" gồm 56 trang được biên soạn bởi tác giả Trịnh Bình nhằm giới thiệu phương pháp giải và bài tập các dạng toán về quan hệ chia hết trên tập hợp số. Đây là tài liệu phù hợp cho học sinh lớp 6 muốn tìm hiểu sâu về chủ đề này và ôn thi học sinh giỏi môn Toán bậc Trung học Cơ sở. Trong tài liệu, các dạng toán quan trọng về quan hệ chia hết được đề cập bao gồm: Dạng Toán lớp 1: Chứng minh tích các số nguyên liên tiếp chia hết cho một số cho trước. Sử dụng tích chất cơ bản như tích hai số nguyên liên tiếp chia hết cho 2, tích của ba số nguyên liên tiếp chia hết cho 6. Dạng Toán lớp 2: Phân tích thành nhân tử để chứng minh chia hết cho một số. Sử dụng phương pháp tách tổng để chứng minh từng hạng tử chia hết cho số đó. Dạng Toán lớp 3: Sử dụng phương pháp phản chứng để chứng minh số không chia hết cho một số khác. Dạng Toán lớp 4-12: Sử dụng các phương pháp khác nhau như quy nạp, nguyên lý Dirichlet, đồng dư, định lý Fermat nhỏ để giải các bài toán quan hệ chia hết trên tập hợp số. Tài liệu này giúp học sinh nắm vững kiến thức cơ bản và phát triển kỹ năng giải toán một cách linh hoạt và logic. Qua việc thực hành các bài tập trong tài liệu, học sinh sẽ củng cố và nâng cao khả năng giải quyết vấn đề, từ đó tự tin hơn trong việc làm bài tập và thi cử.

Nguồn: sytu.vn

Đọc Sách

Các bài toán số học tuyển chọn từ các đề tuyển sinh chuyên Toán
Nội dung Các bài toán số học tuyển chọn từ các đề tuyển sinh chuyên Toán Bản PDF - Nội dung bài viết Các bài toán số học tuyển chọn từ các đề tuyển sinh chuyên Toán Các bài toán số học tuyển chọn từ các đề tuyển sinh chuyên Toán Tài liệu "Các bài toán số học tuyển chọn từ các đề tuyển sinh chuyên Toán" được biên soạn bởi nhóm tác giả Mathpiad, gồm có Phan Quang Đạt, Nguyễn Nhất Huy, và Dương Quỳnh Châu. Tài liệu này bao gồm 62 trang, chứa đựng các bài toán số học chọn lọc từ các đề thi tuyển sinh chuyên Toán. Với sự tổng hợp kỹ lưỡng và chọn lọc từ những tác giả uy tín, đây sẽ là tài liệu hữu ích cho những ai đam mê và muốn thử sức với những bài toán số học phức tạp.
Một số phương pháp chứng minh bất đẳng thức
Nội dung Một số phương pháp chứng minh bất đẳng thức Bản PDF - Nội dung bài viết 78 trang tài liệu hướng dẫn phương pháp chứng minh bất đẳng thức 78 trang tài liệu hướng dẫn phương pháp chứng minh bất đẳng thức Tron trong tài liệu có 78 trang, chúng tôi sẽ hướng dẫn bạn một số phương pháp chứng minh bất đẳng thức, đây thường là bài toán khó nhất trong các đề thi tuyển sinh vào lớp 10 môn Toán. Chúng tôi sẽ giới thiệu và đi vào chi tiết một số phương pháp sau: I. Bất đẳng thức Côsi Dạng 1: Chúng ta sẽ học cách chuyển từ dạng tổng sang tích. Dạng 2: Biết cách chuyển dạng tích sang tổng, nhân bằng số thích hợp. Dạng 3: Qua một bước biến đổi rồi sử dụng bất đẳng thức Côsi. Dạng 4: Ghép cặp đôi để chứng minh bất đẳng thức. Dạng 5: Dự đoán kết quả và tách thích hợp để giải. Dạng 6: Kết hợp đặt ẩn phụ và dự đoán kết quả trong bài toán. Dạng 7: Tìm lại điều kiện của ẩn để áp dụng bất đẳng thức Côsi. II. Bất đẳng thức Bunhia Chúng ta sẽ tìm hiểu về các phương pháp chứng minh bất đẳng thức Bunhia. III. Phương pháp biến đổi tương đương Dạng 1: Biến đổi bài toán về dạng bình phương để chứng minh bất đẳng thức. Dạng 2: Tạo ra bậc hai bằng cách nhân hai bậc một. Dạng 3: Sử dụng phương pháp tạo ra ab + bc + ca để chứng minh. Dạng 4: Sử dụng tính chất trong ba số bất kỳ luôn tồn tại hai số có tích không âm để chứng minh. Dạng 5: Sử dụng tính chất của một số bị chặn từ 0 đến 1 để chứng minh bất đẳng thức. Dạng 6: Dự đoán kết quả rồi xét hiệu để chứng minh bất đẳng thức. Hệ thống bài tập sẽ sử dụng trong các chủ đề sau: Bất đẳng thức Côsi Bất đẳng thức Bunhia Phương pháp biến đổi tương đương
Các bài toán sử dụng nguyên lý bất biến trong giải toán
Nội dung Các bài toán sử dụng nguyên lý bất biến trong giải toán Bản PDF - Nội dung bài viết Các ứng dụng của nguyên lý bất biến trong giải toán Các ứng dụng của nguyên lý bất biến trong giải toán Bản tài liệu này bao gồm 16 trang và được trích từ cuốn sách nổi tiếng về việc áp dụng nguyên lý bất biến trong giải toán. Nguyên lý bất biến là một trong những công cụ quan trọng để giải quyết các bài toán phức tạp trong toán học. Bằng cách áp dụng nguyên lý này, người ta có thể tạo ra những phương pháp giải quyết hiệu quả, tiết kiệm thời gian và nâng cao khả năng suy luận của mình.
Các bài toán sử dụng nguyên lý cực hạn
Nội dung Các bài toán sử dụng nguyên lý cực hạn Bản PDF - Nội dung bài viết Các ứng dụng của nguyên lý cực hạn trong giải bài toán Các ứng dụng của nguyên lý cực hạn trong giải bài toán Tài liệu bao gồm 20 trang và được trích dẫn từ một cuốn sách nổi tiếng về nguyên lý cực hạn. Trong cuốn sách, nguyên lý cực hạn được áp dụng để giải quyết các bài toán phức tạp trong đời sống và công việc hàng ngày. Việc áp dụng nguyên lý cực hạn trong giải quyết bài toán giúp tối ưu hóa kết quả và đưa ra những giải pháp hiệu quả nhất.