Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 8 môn Toán năm 2015 2016 phòng GD ĐT Triệu Sơn Thanh Hóa

Nội dung Đề thi học sinh giỏi lớp 8 môn Toán năm 2015 2016 phòng GD ĐT Triệu Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm 2015 - 2016 phòng GD&ĐT Triệu Sơn Thanh Hóa Đề thi học sinh giỏi Toán lớp 8 năm 2015 - 2016 phòng GD&ĐT Triệu Sơn Thanh Hóa Đề thi học sinh giỏi Toán lớp 8 năm 2015 – 2016 của phòng GD&ĐT Triệu Sơn Thanh Hóa là một bài thi có độ khó cao, đòi hỏi thí sinh phải có kiến thức và kỹ năng giải quyết vấn đề tốt. Kỳ thi diễn ra vào ngày 13 tháng 04 năm 2016 với nhiều câu hỏi thú vị và thách thức. Một số câu hỏi tiêu biểu trong đề thi: + Với mỗi số tự nhiên n, đặt an = 3n^2 + 6n + 13. Thí sinh cần chứng minh rằng nếu hai số ai, aj không chia hết cho 5 và có số dư khác nhau khi chia cho 5 thì ai + aj chia hết cho 5. Ngoài ra cần tìm tất cả các số tự nhiên n lẻ sao cho an là số chính phương. + Trong tam giác ABC, điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho BD = CE. Gọi I, K, M, N lần lượt là trung điểm của BE, CD, BC, DE. Thí sinh cần phân tích và chứng minh

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2023 - 2024 trường THCS Phúc Thọ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi môn Toán 8 năm học 2023 – 2024 trường THCS Phúc Thọ, huyện Nghi Lộc, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 trường THCS Phúc Thọ – Nghệ An : + Cho a, b, c là các số nguyên thoả mãn 3 a b 2024c c. Chứng minh rằng: 333 abc chia hết cho 6. + Cho hình vuông ABCD trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm M, N, P, Q sao cho AM = BN = CP = DQ. a) Chứng minh MNPQ hình vuông. b) Tìm vị trí của M, N, P, Q để diện tích tứ giác MNPQ đạt giá trị nhỏ nhất. Cho tam giác ABC (AB < AC), M là trung điểm của BC. Một đường thẳng qua M và song song với phân giác của góc BAC cắt AC, AB lần lượt tại E, F. Chứng minh CE = BF. + Cho các số nguyên dương a và b thoả mãn 2 2 S a b ab a b 3 2023 chia hết cho 5. Tìm số dư khi chia a – b cho 5.
Đề học sinh giỏi huyện Toán 8 năm 2023 - 2024 phòng GDĐT Nga Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nga Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 10 tháng 11 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2023 – 2024 phòng GD&ĐT Nga Sơn – Thanh Hóa : + Cho a, b, c là các số hữu tỷ thỏa mãn điều kiện ab + bc + ca = 1. Chứng minh rằng giá trị biểu thức Q = (a2 + 1)(b2 + 1)(c2 + 1) là bình phương của một số hữu tỷ. + Cho các số nguyên a, b, c thỏa mãn 2a + b, 2b + c, 2c + a đều là các số chính phương. Biết rằng một trong ba số chính phương trên chia hết cho 3. Chứng minh rằng: P = (a − b)3 + (b − c)3 + (c − a)3 chia hết cho 81. + Cho hình chữ nhật ABCD có BDC = 30°. Qua C vẽ đường thẳng vuông góc với BD, cắt BD ở E và cắt tia phân giác của ADB ở M. a. Chứng minh rằng tứ giác AMBD là hình thang cân. b. Gọi N là hình chiếu của M trên DA, K là hình chiếu của M trên AB. Chứng minh rằng ba điểm N, K, E thẳng hàng.
Đề HSG Toán 8 cấp trường năm 2023 - 2024 trường THCS Yên Phong - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn đội tuyển học sinh giỏi môn Toán 8 cấp trường năm học 2023 – 2024 trường THCS Yên Phong, tỉnh Bắc Ninh. Trích dẫn Đề HSG Toán 8 cấp trường năm 2023 – 2024 trường THCS Yên Phong – Bắc Ninh : + Xét phép toán a*b = ab + ba với mọi số nguyên dương a b. Tìm số nguyên dương x nếu 2*x = 100. + Chứng minh rằng với mọi số tự nhiên n khác 0 thì số n2 + n + 1 không phải là số chính phương. + Cho hình bình hành ABCD (góc A khác 120°). Vẽ các tam giác đều ABE và ADF nằm ngoài hình bình hành đó. a) Chứng minh tam giác CEF làm tam giác đều. b) Gọi M, I, K theo thứ tự là trung điểm của BD, AF, AE. Tính góc IMK. 2. Cho tam giác ABC vuông tại A đường cao AH. Chứng minh rằng AB + AC < AH + BC.
Đề kiểm tra CLB Toán 8 năm 2023 - 2024 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra CLB Văn Hóa môn Toán 8 năm học 2023 – 2024 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 12 tháng 09 năm 2023; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề kiểm tra CLB Toán 8 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội : + Cho đa thức f x ax b với a b là các số nguyên và a ≠ 0. Biết giá trị của đa thức tại x = 1 và x = 3 tỉ lệ với 2 và −2. Chứng minh rằng b chia hết cho a. + Cho tam giác ABC vuông tại A AB AC đường cao AH H BC. Dựng HM AB tại M HN AC tại N. Gọi I là giao điểm của AH với MN. 1. Chứng minh rằng AMH HNA và IM IN. 2. Gọi O là trung điểm của BC, Q là giao điểm của HN và OA. Chứng minh rằng ANQ HMB và BQ MN. 3. Gọi J là giao điểm của BQ và AH. Chứng minh rằng BJO MNC. + Khi trên bảng ghi 2023 số tự nhiên 1 2 3 2023 cần xóa đi ít nhất bao nhiêu số để các số còn lại trên bảng có tính chất không có 3 số nào mà một trong 3 số đó bằng tích của 2 số còn lại.