Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra chuyên đề Toán 11 lần 1 năm 2019 2020 trường Quang Hà Vĩnh Phúc

Ngày … tháng 11 năm 2019, trường THPT Quang Hà – Vĩnh Phúc tổ chức kỳ thi kiểm tra chuyên đề môn Toán lớp 11 lần thứ nhất năm học 2019 – 2020, nhằm khảo sát chất lượng Toán 11 giai đoạn giữa học kỳ 1. Đề kiểm tra chuyên đề Toán 11 lần 1 năm học 2019 – 2020 trường THPT Quang Hà – Vĩnh Phúc gồm có 02 mã đề: đề số 01 và đề số 02, đề gồm 01 trang với 07 bài toán tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra chuyên đề Toán 11 lần 1 năm 2019 – 2020 trường Quang Hà – Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1;3), B(2;-1), đường thẳng d có phương trình: 2x – 3y + 5 = 0 và vectơ v = (1;−3). a) Tìm tọa độ điểm A’ là ảnh của A qua phép tịnh tiến theo vectơ v. b) Viết phương trình ∆ là ảnh của d qua phép tịnh tiến theo vectơ v. c) Viết phương trình đường tròn (C) có tâm A và đi qua B. Viết phương trình đường tròn (C’) là ảnh của (C) qua phép quay tâm O(0;0) góc quay 90 độ. [ads] + Xác định m để phương trình cos4x = (cos3x)^2 + m(sinx)^2 có nghiệm thuộc (0;pi/12). + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(3;2), B(1;4), C(1;1). Gọi M, N, P lần lượt là chân các đường cao kẻ từ A, B, C của tam giác ABC. Giả sử M’, N’, P’ lần lượt là ảnh của M, N, P qua phép tịnh tiến theo vectơ AB. Tìm tọa độ tâm đường tròn nội tiếp tam giác M’N’P’.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán 11 lần 2 năm 2020 - 2021 trường THPT Yên Lạc 2 - Vĩnh Phúc
Ngày … tháng 03 năm 2021, trường THPT Yên Lạc 2, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 11 lần 2 giai đoạn giữa học kì 2 năm học 2020 – 2021. Đề KSCL Toán 11 lần 2 năm 2020 – 2021 trường THPT Yên Lạc 2 – Vĩnh Phúc được biên soạn theo hình thức đề thi trắc nghiệm 100%, đề gồm 05 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án. Ma trận đề KSCL Toán 11 lần 2 năm 2020 – 2021 trường THPT Yên Lạc 2 – Vĩnh Phúc:TTNội dung kiến thứcNhận biếtThông hiểuVận dụngVận dụng caoTổng1Hàm số lượng giác110022Phương trình lượng giác232183Quy tắc đếm, hoán vị – chỉnh hợp – tổ hợp211044Nhị thức Newton110025Xác suất111146Dãy số110027Cấp số cộng – cấp số nhân221178Giới hạn dãy số101029Phép biến hình2100410Quan hệ song song34421311Toán 1022004TổngTỉ lệ % mức độ nhận thức36%34%20%10%100%
Đề KSCL Toán 11 lần 1 năm 2021 - 2022 trường THPT Tiên Du 1 - Bắc Ninh
Đề khảo sát chất lượng môn Toán 11 lần 1 năm học 2021 – 2022 trường THPT Tiên Du 1 – Bắc Ninh mã đề 201 gồm 35 câu trắc nghiệm (07 điểm) và 07 câu tự luận (03 điểm), thời gian làm bài 90 phút. Trích dẫn đề KSCL Toán 11 lần 1 năm 2021 – 2022 trường THPT Tiên Du 1 – Bắc Ninh : + Cho phương trình dạng 2 2 a x b x x c x sin sin cos cos 0 (với a b c không đồng thời bằng 0) . Khi cos 0 x thì biến đổi phương trình đã cho bằng cách nào sau đây để được phương trình chỉ chứa tan x? A. Chia cả hai vế cho 2 cos x. B. Chia cả hai vế cho 2 sin x. C. Chia cả hai vế cho 2 tan x. D. Chia cả hai vế cho 2 cot x. + Cho tam giác ABC và ở ngoài tam giác đó vẽ hai hình vuông ABMN, ACPQ. Gọi O và O’ lần lượt tâm của các hình vuông ABMN và ACPQ. Gọi điểm I là trung điểm của đoạn thẳng BC. Chứng minh rằng: OI BQ. + Khẳng định nào sau đây là đúng? A. Hàm số y x cos 3 là hàm số không chẵn không lẻ. B. Hàm số y x cos 3 là hàm số chẵn. C. Hàm số y x cos 3 là hàm số lẻ. D. Hàm số y x cos 3 là hàm số chẵn và là hàm số lẻ.
Đề KSCL phân ban Toán 11 năm 2021 - 2022 trường Thuận Thành 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng phân ban môn Toán lớp 11 năm học 2021 – 2022 trường THPT Thuận Thành số 1, tỉnh Bắc Ninh; đề thi có đáp án mã đề 320 321 322 323 324. Trích dẫn đề KSCL phân ban Toán 11 năm 2021 – 2022 trường Thuận Thành 1 – Bắc Ninh : + Một nông dân có 8 sào đất trồng hoa màu. Biết một sào trồng ngô cần 20 công, lãi 3 triệu. Một sào trồng đỗ cần 30 công, lãi 4 triệu. Người nông dân cần trồng x sào ngô và y sào đỗ thì thu hoạch được lãi cao nhất, khi biết tổng số công không quá 180 công. Khi đó T x y 3 2 bằng? + Có hai cái giỏ đựng trứng gồm giỏ A và giỏ B, các quả trứng trong mỗi giỏ đều có hai loại là trứng lành và trứng hỏng. Tổng số trứng trong hai giỏ là 20 quả và số trứng trong giỏ A nhiều hơn số trứng trong giỏ B. Lấy ngẫu nhiên mỗi giỏ 1 quả trứng, biết xác suất để lấy được hai quả trứng lành là 55 84. Số trứng lành trong giỏ A là? + Cho hình chóp S ABCD có đáy ABCD là hình vuông tâm O, cạnh đáy bằng a, cạnh bên SC bằng b thỏa mãn 2 8 a b. Gọi M là trung điểm của OC, mặt phẳng qua M song song với SC và BD. Gọi T là diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng. Giá trị lớn nhất của T là? + Trong các khẳng định sau, khẳng định đúng là A. Trong hình học không gian, hình biễu diễn của một hình thang phải là một hình thang. B. Trong hình học không gian, hình biểu diễn của một hình chữ nhật phải là một hình chữ nhật. C. Trong hình học không gian, hình biểu diễn của một tam giác cân phải là một tam giác cân. D. Trong hình học không gian, hình biểu diễn của một hình tròn phải là một hình tròn. + Mệnh đề nào sau đây sai về phép vị tự: A. Biến đường thẳng thành đường thẳng song song hoặc trùng với nó. B. Biến tam giác thành tam giác đồng dạng với nó, biến góc thành góc bằng nó. C. Biến đường tròn thành đường tròn cùng bán kính. D. Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữa các điểm ấy.
Đề KSCL Toán 11 lần 2 năm 2021 - 2022 trường THPT Tiên Du 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng môn Toán khối 11 lần 2 năm học 2021 – 2022 trường THPT Tiên Du số 1, tỉnh Bắc Ninh; đề thi có đáp án mã đề MĐ 101 MĐ 102 MĐ 103 MĐ 104 MĐ 105 MĐ 106 MĐ 107 MĐ 108 MĐ 109 MĐ 110 MĐ 111 MĐ 112. Trích dẫn đề KSCL Toán 11 lần 2 năm 2021 – 2022 trường THPT Tiên Du 1 – Bắc Ninh : + Mệnh đề nào sau đây đúng? A. Hàm số y x cot là hàm số chẵn và là hàm số lẻ trên tập hợp. B. Hàm số y x cot là hàm số lẻ trên tập hợp. C. Hàm số y x cot là hàm số chẵn trên tập hợp. D. Hàm số y x cot không là hàm số chẵn và không là hàm số lẻ trên tập hợp. + Trong các khẳng định sau, khẳng định nào sai? A. Qua 3 điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. B. Qua 1 đường thẳng và 1 điểm bất kỳ có duy nhất một mặt phẳng. C. Qua 2 đường thẳng cắt nhau có duy nhất một mặt phẳng. D. Qua 2 đường thẳng song song có duy nhất một mặt phẳng. + Có 13 học sinh của một trường THPT đạt danh hiệu học sinh xuất sắc trong đó khối 12 có 7 học sinh nam và 4 học sinh nữ, khối 11 có 2 học sinh nam. Chọn ngẫu nhiên 3 học sinh bất kỳ để trao thưởng, tính xác suất để 3 học sinh được chọn có cả nam và nữ đồng thời có cả khối 11 và khối 12.