Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào 10 môn Toán năm 2019 trường THCS Tân Mai Hà Nội

Nội dung Đề thi thử vào 10 môn Toán năm 2019 trường THCS Tân Mai Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào 10 môn Toán năm 2019 trường THCS Tân Mai Hà Nội Đề thi thử vào 10 môn Toán năm 2019 trường THCS Tân Mai Hà Nội Trong kỳ thi thử vào 10 môn Toán năm 2019 của trường THCS Tân Mai, học sinh sẽ đối diện với 5 bài toán khó khăn. Đề thi được thiết kế để đánh giá kiến thức và kỹ năng của học sinh và giúp họ chuẩn bị tốt cho kì thi chính thức vào lớp 10 THPT. Một trong những bài toán trong đề thi đòi hỏi học sinh phải biết cách lập phương trình hoặc hệ phương trình để giải quyết vấn đề thực tế. Ví dụ, bài toán về việc tính thời gian mà một chiếc xe ô tô cần phải chạy, khi phải thay đổi vận tốc do điều kiện thời tiết. Đây là một bài toán không chỉ yêu cầu kiến thức cơ bản mà còn đề cao kỹ năng làm việc đồng thời với thời gian và vận tốc. Ngoài ra, đề thi còn đề cập đến các bài toán về hình học, yêu cầu học sinh phải có khả năng phân tích và suy luận. Ví dụ, bài toán về tam giác ABC vuông tại A sẽ đòi hỏi học sinh tính toán diện tích và thể tích của hình tạo ra sau khi quay tam giác. Đề thi thử vào 10 môn Toán năm 2019 trường THCS Tân Mai Hà Nội không chỉ là bài kiểm tra kiến thức mà còn là cơ hội để học sinh thể hiện khả năng phân tích, suy luận và giải quyết vấn đề. Điều này sẽ giúp họ chuẩn bị tốt cho cuộc thi chính thức và phát triển kỹ năng toán học của mình.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (không chuyên) năm 2022 2023 sở GDKHCN Bạc Liêu
Nội dung Đề tuyển sinh môn Toán (không chuyên) năm 2022 2023 sở GDKHCN Bạc Liêu Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (không chuyên) năm 2022 - 2023 sở GDKHCN Bạc Liêu Đề tuyển sinh môn Toán (không chuyên) năm 2022 - 2023 sở GDKHCN Bạc Liêu Chào đón quý thầy cô và các em học sinh lớp 9. Đây là đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2022 - 2023 của sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu. Kỳ thi sẽ diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Trích đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 - 2023 sở GDKHCN Bạc Liêu: 1. Cho parabol (P): y = x² và đường thẳng (d): y = 3x - 2. Hãy vẽ đồ thị của (P) và tìm tọa độ giao điểm của (P) với đường thẳng (d) dựa trên phép tính. 2. Giải phương trình x² - 5x + m + 2 = 0 (m là tham số): a) Giải phương trình khi m = 2. b) Tìm điều kiện của m để phương trình (1) có hai nghiệm phân biệt. c) Gọi x₁ và x₂ là hai nghiệm phân biệt của phương trình (1). Tìm giá trị lớn nhất của biểu thức P = x₁ + x₂. 3. Trên nửa đường tròn tâm O đường kính AB = 2R, vẽ điểm C (C khác A và B), kẻ CH vuông góc với AB (H thuộc AB). Gọi D là điểm bất kì trên đoạn CH (D khác C và H), đường thẳng AD cắt nửa đường tròn tại E. a) Chứng minh tứ giác BHDE nội tiếp. b) Chứng minh AD∙EC = CD∙AC. c) Khi điểm C di chuyển trên nửa đường tròn (C khác A, B và trung điểm của cung AB), xác định vị trí của điểm C sao cho chu vi tam giác COH lớn nhất.
Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT Ninh Bình
Nội dung Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT Ninh Bình Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán (chuyên) năm 2022-2023 sở GD ĐT Ninh Bình Đề tuyển sinh THPT môn Toán (chuyên) năm 2022-2023 sở GD ĐT Ninh Bình Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Ninh Bình. Kỳ thi sẽ diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Dưới đây là một số câu hỏi được trích dẫn từ đề thi: Tìm tất cả các số nguyên dương $a$ và các số nguyên tố $p$ thỏa mãn $a^2 = 7p^4 + 9$. Cho tam giác $ABC$ (với $AB < AC$) nội tiếp đường tròn $(O)$. Gọi $M$, $N$ lần lượt là trung điểm của các cạnh $AB$, $AC$. Đường thẳng $MN$ cắt $(O)$ tại các điểm $P$, $Q$ ($P$ thuộc cung nhỏ $AB$ và $Q$ thuộc cung nhỏ $AC$). Lấy điểm $D$ trên cạnh $BC$ ($D$ khác $B$ và $D$ khác $C$). Đường tròn ngoại tiếp tam giác $BDP$ cắt $AB$ tại điểm $I$ ($I$ khác $B$). Đường thẳng $DI$ cắt $AC$ tại $K$. Chứng minh rằng tứ giác $AIPK$ nội tiếp. Chứng minh rằng $\frac{PK}{PD} = \frac{QB}{QA}$. Đường thẳng $CP$ cắt đường tròn ngoại tiếp tam giác $BDP$ tại $G$ ($G$ khác $P$). Đường thằng $IG$ cắt đường thẳng $BC$ tại điểm $E$. Chứng minh rằng khi điểm $D$ di chuyển trên cạnh $BC$ thì tỉ số $\frac{CD}{CE}$ không đổi. Cho bảng ô vuông $3 \times 3$ gồm ba dòng và ba cột. Người ta ghi tất cả các số thuộc tập hợp $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ vào các ô vuông của bảng, sao cho tổng các số trong mỗi bảng vuông con cỡ $2 \times 2$ đều bằng nhau. Hãy chỉ ra một cách ghi các số vào bảng thỏa mãn yêu cầu bài toán. Trong tất cả các cách ghi các số vào bảng thỏa mãn yêu cầu bài toán, tìm giá trị lớn nhất của tổng các số trong mỗi bảng vuông con cỡ $2 \times 2$. Hy vọng các em sẽ ôn tập và làm bài thi tốt! Chúc quý thầy cô giáo và các em học sinh thành công!
Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT Bình Thuận
Nội dung Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT Bình Thuận Bản PDF - Nội dung bài viết Đề Thi Tuyển Sinh THPT Môn Toán (Chuyên) Năm 2022-2023 Sở GD&ĐT Bình Thuận Đề Thi Tuyển Sinh THPT Môn Toán (Chuyên) Năm 2022-2023 Sở GD&ĐT Bình Thuận Xin chào quý thầy cô và các em học sinh lớp 9! Trong kỳ thi tuyển sinh vào lớp 10 THPT công lập môn Toán chuyên (hệ số 2) năm học 2022-2023 của sở GD&ĐT Bình Thuận, chúng ta sẽ cùng nhau trải qua những thử thách và cơ hội để thể hiện khả năng và kiến thức của mình. Dưới đây là một số câu hỏi mẫu trong đề thi chính thức: Câu 1: Hai bạn An và Bình đang so sánh số lượng viên bi mà họ hiện có. An nói rằng nếu Bình cho An một số viên bi từ túi của mình, thì An sẽ có số viên bi gấp 6 lần số viên bi của Bình. Ngược lại, nếu An cho Bình số viên bi như vậy, thì số viên bi của Bình sẽ bằng 1/3 số viên bi của An. Hãy tìm số viên bi ít nhất mà bạn An có thể có. Câu 2: Trong tam giác ABC có đường tròn nội tiếp tâm O, tiếp xúc với các cạnh AB, AC tại D và E. Gọi I là tâm đường tròn nội tiếp tam giác ADE. Hãy chứng minh rằng A, I, O thẳng hàng và I thuộc đường tròn (O). Sau đó, chứng minh rằng tứ giác BCMN nội tiếp và tam giác BMC vuông. Câu 3: Người ta viết các số nguyên 1, 2, 3, 4, 5, 6, 7, 8 lên các đỉnh của một bát giác lồi sao cho tổng các số ở mỗi ba đỉnh liên tiếp không nhỏ hơn k (với k là số nguyên dương). Hãy tìm giá trị lớn nhất của k trong trường hợp này. Chúc các em sẽ làm tốt trong kỳ thi sắp tới và đạt được kết quả cao nhất! Hãy tự tin và cố gắng hết mình!
Đề tuyển sinh chuyên môn Toán (chuyên) 2022 2023 sở GD ĐT Gia Lai
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) 2022 2023 sở GD ĐT Gia Lai Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên Toán (chuyên) 2022 2023 sở GD ĐT Gia Lai Đề thi tuyển sinh chuyên Toán (chuyên) 2022 2023 sở GD ĐT Gia Lai Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 chuyên môn Toán (chuyên) năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Gia Lai. Kỳ thi sẽ diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 – 2023 sở GD&ĐT Gia Lai bao gồm các câu hỏi sau: Tìm một đa thức bậc ba P(x) với hệ số nguyên, biết x là một nghiệm của P(x) và P(1) = -6. Tìm tất cả các số nguyên x, y thỏa mãn phương trình: x^2y^2 – 2x^2y + 3x^2 + 4xy – 4x + 2y^2 – 4y – 1 = 0. Cho tam giác ABC nhọn nội tiếp đường tròn (O), kẻ ba đường cao AD, BE, CF cắt nhau tại H, lấy điểm M trên cung nhỏ BC (M khác B và C). Gọi P là điểm đối xứng với M qua AB. Chứng minh rằng APB = ACB và tứ giác AHBP nội tiếp đường tròn. Chứng minh rằng H là tâm đường tròn nội tiếp tam giác FDE. Tìm giá trị nhỏ nhất của biểu thức T. Hi vọng các em sẽ tự tin và làm tốt trong kỳ thi sắp tới. Chúc các em đạt được kết quả cao trong bài thi sắp tới!