Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển lớp 8 môn Toán năm 2022 2023 hệ thống GD Archimedes School Hà Nội

Nội dung Đề chọn đội tuyển lớp 8 môn Toán năm 2022 2023 hệ thống GD Archimedes School Hà Nội Bản PDF - Nội dung bài viết Đề chọn đội tuyển lớp 8 môn Toán năm 2022 - 2023 hệ thống GD Archimedes School Hà Nội Đề chọn đội tuyển lớp 8 môn Toán năm 2022 - 2023 hệ thống GD Archimedes School Hà Nội Xin chào quý thầy cô và các em học sinh lớp 8! Sytu xin giới thiệu đến các bạn đề thi chọn đội tuyển học sinh giỏi môn Toán lớp 8 năm học 2022 – 2023 tại trường Archimedes School, thành phố Hà Nội. Đề thi gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài thi là 135 phút. Dưới đây là một số câu hỏi trong đề chọn đội tuyển Toán lớp 8 năm 2022 - 2023 hệ thống GD Archimedes School - Hà Nội: Cho các số nguyên dương a, b, c, d thỏa mãn điều kiện ab = cd. Chứng minh rằng (a + c)2 + (b + d)2 không thể là tích của ba số nguyên tố phân biệt. Cho tam giác ABC cân tại A, có BC < BA. Gọi H là giao điểm của các đường cao BE và CF của tam giác ABC. a) Chứng minh tứ giác BFEC là hình thang cân. b) Chứng minh OI = OK, MN vuông góc với HK. Trên bàn có 269 thẻ bài màu đỏ, 269 thẻ bài màu xanh và 269 thẻ bài màu tím. Thầy Cẩn thực hiện phép chọn ba thẻ bài cùng màu rồi thêm vào bàn một thẻ bài khác màu. Hỏi khi trên bàn mỗi màu không quá hai thẻ bài, có bao nhiêu thẻ bài mỗi màu? Mong rằng đề thi sẽ giúp các em học sinh lớp 8 rèn luyện kỹ năng và kiến thức Toán, từ đó chinh phục thành công các thử thách trí tuệ. Chúc quý thầy cô và các em học sinh thành công!

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu học sinh giỏi Toán 8 năm 2018 - 2019 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 8 năm 2018 – 2019 phòng GD&ĐT thành phố Thái Nguyên gồm 03 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút.
Đề giao lưu HSG Toán 8 năm 2017 - 2018 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Chí Linh – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Chí Linh – Hải Dương : + Cho hình thoi ABCD cạnh a có. Hai đường chéo AC và BD cắt nhau tại O, E thuộc tia BC sao cho, AE cắt CD tại F. Trên hai đoạn AB và AD lần lượt lấy hai điểm G và H sao cho CG song song với FH. a) Tính diện tích hình thoi ABCD theo a. b) Chứng minh rằng. c) Tính số đo góc GOH. + Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0; P(3) = 0; P(5) = 0. Tính giá trị của biểu thức: Q = P(-2) + 7P(6). + Cho 3 số nguyên tố x < y < z liên tiếp thỏa mãn là một số nguyên tố. Chứng minh rằng cũng là một số nguyên tố.
Đề Olympic Toán 8 năm 2017 - 2018 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề Olympic Toán 8 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề Olympic Toán 8 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương : + Cho O là trung điểm của đoạn AB. Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB vẽ tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. 1) Chứng minh AB2 = 4 AC.BD. 2) Kẻ OM vuông góc CD tại M. Chứng minh AC = CM. 3) Từ M kẻ MH vuông góc AB tại H. Chứng minh BC đi qua trung điểm MH. + Cho đa thức f(x) = x3 – 3×2 + 3x – 4. Với giá trị nguyên nào của x thì giá trị của đa thức f(x) chia hết cho giá trị của đa thức x2 + 2. + Cho x, y, z là các số dương thỏa mãn x + y + z = 1. Tìm giá trị nhỏ nhất của biểu thức: P.
Đề học sinh giỏi Toán 8 năm 2017 - 2018 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề học sinh giỏi Toán 8 năm 2017 – 2018 phòng GD&ĐT Kim Thành – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi Toán 8 năm 2017 – 2018 phòng GD&ĐT Kim Thành – Hải Dương : + Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD. Chứng minh: a) Tứ giác BEDF là hình bình hành. b) CH.CD = CB.CK. c) AB.AH + AD.AK = AC2. + Cho biểu thức M. a) Tìm điều kiện của x để M xác định và rút gọn M. b) Tìm tất các giá trị của x để M > 0. + Xác định một đa thức bậc ba f(x) không có hạng tử tự do sao cho: f(x) – f(x – 1) = x2.