Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chuyên đề Toán 10 lần 3 năm 2022 - 2023 trường THPT Trần Phú - Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chuyên đề môn Toán 10 lần 3 năm học 2022 – 2023 trường THPT Trần Phú, tỉnh Vĩnh Phúc; đề thi mã đề 101 gồm 06 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm, thời gian làm bài: 90 phút (không kể thời gian phát đề). Trích dẫn Đề thi chuyên đề Toán 10 lần 3 năm 2022 – 2023 trường THPT Trần Phú – Vĩnh Phúc : + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu? + Một người cần phải chèo thuyền từ vị trí A đến vị trí C trên bờ BD, sau chạy bộ từ C đến B. Biết rằng vận tốc chèo thuyền bằng 6km h vận tốc chạy bộ là 8km h khoảng cách từ vị trí A đến bờ BD bằng 3km, khoảng cách hai vị trí B D bằng 8km. Tính khoảng cách lớn nhất giữa hai vị trí B C biết rằng tổng thời gian người đó chèo thuyền và chạy bộ là 1 giờ 20 phút. + LeBron James là một cầu thủ bóng rổ chuyên nghiệp Mỹ và hiện tại đang chơi cho CLB bóng rổ Cleveland Cavaliers của Hiệp hội Bóng rổ Quốc gia (NBA). Trong một cuộc thi bóng rổ để ném bóng vào rổ qua đối thủ, LeBron James đã ném bóng thành công với số liệu đo được như hình vẽ (OA OB m BC m A m OE m 4 5 175 D 3 3). Tính độ cao lớn nhất của bóng so với mặt đất trong khi bóng bay tới rổ biết rằng quỹ đạo bay của bóng là một đường cong parabol.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia lần 1 lớp 10 môn Toán trường THPT Yên Phong 1 Bắc Ninh
Nội dung Đề thi thử THPT Quốc gia lần 1 lớp 10 môn Toán trường THPT Yên Phong 1 Bắc Ninh Bản PDF Đề thi thử THPT Quốc gia lần 1 môn Toán lớp 10 trường THPT Yên Phong 1 – Bắc Ninh mã đề 132 gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi thử có đáp án . Theo như dự kiến của Bộ Giáo dục và Đào tạo, kỳ thi THPT Quốc gia 2019 sẽ bao gồm  cả chương trình Toán lớp 10, 11 và 12, do đó, nhiều trường THPT trên toàn quốc đã sớm tổ các các đợt thi thử THPT Quốc gia môn Toán dành cho học sinh lớp 10, nhằm giúp các em có điều kiện rèn luyện thường xuyên và làm quen với hình thức, cấu trúc đề thi. Trích dẫn đề thi thử Toán lớp 10 : + Một của hàng buôn giày nhập một đôi với giá là 40 đôla. Cửa hàng ước tính rằng nếu đôi giày được bán với giá x đôla thì mỗi tháng khách hàng sẽ mua (120 – x) đôi. Hỏi của hàng bán một đôi giày giá bao nhiêu thì thu được nhiều lãi nhất? [ads] + Một miếng giấy hình tam giác ABC diện tích S có I là trung điểm BC và O là trung điểm của AI. Cắt miếng giấy theo một đường thẳng qua O, đường thẳng này đi qua M, N lần lượt trên các cạnh AB, AC. Khi đó diện tích miếng giấy chứa điểm A có diện tích thuộc đoạn? + Cho tam giác ABC, biết |AB + AC| = |AB – AC|. Mệnh đề nào sau đây đúng? A. Tam giác ABC vuông tại A. B. Tam giác ABC vuông tại B. C. Tam giác ABC vuông tại C. D. Tam giác ABC cân tại A. File WORD (dành cho quý thầy, cô):
Đề thi KSCL lớp 10 môn Toán lần 2 năm học 2017 2018 trường THPT Liễn Sơn Vĩnh Phúc
Nội dung Đề thi KSCL lớp 10 môn Toán lần 2 năm học 2017 2018 trường THPT Liễn Sơn Vĩnh Phúc Bản PDF Đề thi KSCL Toán lớp 10 lần 2 năm học 2017 – 2018 trường THPT Liễn Sơn – Vĩnh Phúc gồm 1 trang với 10 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi KSCL Toán lớp 10 : + Cho hình vuông ABCD cạnh a, trên cạnh AC lấy điểm M sao cho AM = AC/4. Gọi N là trung điểm DC. Chứng minh rằng tam giác BMN vuông cân. + Trên hệ trục Oxy cho các điểm A(1;2); B(4;0); C(3;-2). Chứng minh rằng 3 điểm A, B, C lập thành một tam giác. Tính diện tích tam giác ABC. [ads] + Cho tam giác ABC có trọng tâm G. Hãy biểu diễn véctơ AG qua các véctơ AB; AC. + Tìm tất cả các giá trị của tham số m để phương trình x^2 – 2(m + 1)x + m^2 – 2m = 0 có hai nghiệm x1, x2 sao cho: |x1 – x2| = 6. + Xác định a, b để đồ thị hàm số y = ax + b đi qua 2 điểm M(0;-2), N(2;4).
Đề thi KSCL lớp 10 môn Toán lần 1 năm học 2017 2018 trường THPT Liễn Sơn Vĩnh Phúc
Nội dung Đề thi KSCL lớp 10 môn Toán lần 1 năm học 2017 2018 trường THPT Liễn Sơn Vĩnh Phúc Bản PDF Đề thi KSCL Toán lớp 10 lần 1 năm học 2017 – 2018 trường THPT Liễn Sơn – Vĩnh Phúc gồm 10 câu hỏi tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong một cuộc điều tra dân số, báo cáo dân số của tỉnh X là 2615473 người ± 300 người. Viết số quy tròn của số gần đúng 2615473. + Chiều cao của một cây cổ thụ là 39,73 m ± 0,2 m. Viết số quy tròn của số gần đúng 39,73. [ads] + Cho hai tập hợp A = {1; 2; 3; 4; 5}, B = {1; 2; 3; 6}. Tìm tất cả các tập hợp X sao cho X ⊂ A và X ⊂ B. + Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AB và CD. Chứng minh : vtAD + vtBC = 2.vtMN. + Chứng minh rằng ít nhất 1 trong 3 phương trình bậc hai sau đây có nghiệm: ax^2 + 2bx + c = 0, bx^2 + 2cx + a = 0, cx^2 + 2ax + b = 0 (x là ẩn).
Đề thi khảo sát chuyên đề lớp 10 môn Toán lần 1 năm học 2017 2018 trường THPT Nguyễn Thị Giang Vĩnh Phúc
Nội dung Đề thi khảo sát chuyên đề lớp 10 môn Toán lần 1 năm học 2017 2018 trường THPT Nguyễn Thị Giang Vĩnh Phúc Bản PDF Đề thi khảo sát chuyên đề Toán lớp 10 lần 1 năm học 2017 – 2018 trường THPT Nguyễn Thị Giang – Vĩnh Phúc gồm 6 mã đề, mỗi mã đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng? A. Nếu a chia hết cho 9 thì a chia hết cho 3 B. Nếu em chăm chỉ thì em thành công C. Nếu a ≥ b thì a^2 ≥ b^2 D. Nếu một tam giác có một góc bằng 60 độ thì tam giác đó là đều [ads] + Trong các khẳng định sau, khẳng định nào đúng: A. Hai vectơ cùng phương với vectơ thứ ba thì cùng phương B. Hai vectơ cùng phương với vectơ thứ ba thì cùng hướng C. Hai vectơ cùng phương với vectơ thứ ba khác vt0 thì cùng phương D. Hai vectơ cùng hướng với vectơ thứ ba thì cùng hướng + Mệnh đề “∃x ∈ R: x^2 = 3” khẳng định rằng: A. Có ít nhất 1 số thực mà bình phương của nó bằng 3 B. Nếu x là số thực thì x^2 = 3 C. Chỉ có 1 số thực có bình phương bằng 3 D. Bình phương của mỗi số thực bằng 3 File WORD (dành cho quý thầy, cô):