Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lớp 10 môn Toán lần 1 năm 2018 2019 trường Trần Hưng Đạo Vĩnh Phúc

Nội dung Đề thi KSCL lớp 10 môn Toán lần 1 năm 2018 2019 trường Trần Hưng Đạo Vĩnh Phúc Bản PDF Nhằm kiểm tra chất lượng giữa học kỳ 1 năm học 2018 – 2019, lấy điểm hệ số 2 để làm cơ sở đánh giá và xếp loại học lực môn Toán lớp 10, trường THPT Trần Hưng Đạo – Vĩnh Phúc đã tổ chức kỳ thi KSCL Toán lớp 10 lần 1 năm 2018 – 2019, đề thi có mã đề 132 được biên soạn theo hình thức trắc nghiệm hoàn toàn với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi KSCL Toán lớp 10 lần 1 năm 2018 – 2019 trường Trần Hưng Đạo – Vĩnh Phúc : + Mệnh đề nào sau đây là phủ định của mệnh đề “Mọi động vật đều di chuyển”? A. Mọi động vật đều không di chuyển. B. Có ít nhất một động vật di chuyển. C. Mọi động vật đều đứng yên. D. Có ít nhất một động vật không di chuyển. [ads] + Mệnh đề nào đúng? A. Véc tơ AB là đoạn thẳng có hướng. B. Véc tơ AB có độ dài bằng độ dài đoạn thẳng AB. C. Véc tơ AB có giá song song với đường thẳng AB. D. Véc tơ AB là đoạn thẳng AB. + Cho một tam giác vuông. Khi ta tăng mỗi cạnh góc vuông lên 2cm thì diện tích tam giác tăng thêm 17cm2. Nếu giảm các cạnh góc vuông đi 3cm và 1 cm thì diện tích tam giác giảm 11cm2. Tính diện tích của tam giác ban đầu. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi KSCL lần 1 Toán 10 năm 2023 - 2024 trường THPT Nông Cống 3 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng lần 1 môn Toán 10 năm học 2023 – 2024 trường THPT Nông Cống 3, tỉnh Thanh Hóa; đề thi có đáp án trắc nghiệm mã đề 701 – 702 – 703 – 704. Trích dẫn Đề thi KSCL lần 1 Toán 10 năm 2023 – 2024 trường THPT Nông Cống 3 – Thanh Hóa : + Một phân xưởng có hai máy đặc chủng A, B sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại 2 lãi 1,6 triệu dồng. Muốn sản xuất 1 tấn sản phẩm loại I dùng máy A trong 3 giờ và máy B trong 1 giờ. Muốn sản xuất 1 tấn sản phẩm loại II dùng máy A trong 1 giờ và máy B trong 1 giờ. Một máy không thể dùng để sản suất đồng thời 2 loại sản phẩm. Máy A làm việc không quá 6 giờ trong một ngày, máy B một ngày chỉ làm việc không quá 4 giờ. Số tiền lãi cao nhất một ngày là? + Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C. Ta đo được khoảng cách AB 40 m CAB CBA 45 70. Vậy sau khi đo đạc và tính toán khoảng cách AC gần nhất với giá trị nào sau đây? + Cho tập hợp A = {đỏ; cam; tím; hồng; lam), B = {lục; hồng, chàm; tím}. Kết quả của phép toán A B là?
Đề khảo sát lần 1 Toán 10 năm 2023 - 2024 trường THPT Ngô Thì Nhậm - Ninh Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng lần 1 môn Toán 10 năm học 2023 – 2024 trường THPT Ngô Thì Nhậm, tỉnh Ninh Bình; đề thi có đáp án trắc nghiệm mã đề 146. Trích dẫn Đề khảo sát lần 1 Toán 10 năm 2023 – 2024 trường THPT Ngô Thì Nhậm – Ninh Bình : + Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi loại lần lượt là 5 triệu đồng/1 chiếc và 10 triệu đồng/1 chiếc, với số vốn ban đầu không vượt quá 1 tỉ đồng. Máy A mang lại lợi nhuận 1,5 triệu đồng trên mỗi máy bán được, máy B mang lại lợi nhuận 2 triệu đồng trên mỗi máy bán được. Cửa hàng đó ước tính hàng tháng bán được nhiều nhất là 120 cái. Hỏi lợi nhuận lớn nhất mà cửa hàng thu về trong một tháng là bao nhiêu. + Một khách sạn ở thành phố Ninh Bình bị nước lụt tràn vào, cần di chuyển cùng một lúc 80 hành khách và 60 vali hành lý. Lúc này chỉ huy động được 10 chiếc thuyền lớn và 12 chiếc thuyền nhỏ. Một chiếc thuyền lớn chỉ có thể chở 10 hành khách và 9 vali hành lý. Một chiếc thuyền nhỏ chỉ có thể chở 8 hành khách và 6 vali hành lý. Giá một chuyến thuyền lớn là 300 (ngàn đồng) và giá một chuyến thuyền nhỏ là 250 (ngàn đồng). Hỏi chủ khách sạn cần thuê bao nhiêu chiếc thuyền mỗi loại để chi phí thấp nhất? + Một nhóm có 25 học sinh chuẩn bị cho hội thi thể thao. Trong danh sách đăng ký tham gia thi cầu lông và bóng bàn của nhóm đó, có 12 học sinh tham gia thi cầu lông, có 5 học sinh tham gia cả hai môn cầu lông và bóng bàn. Có 4 học sinh của nhóm không tham gia bất kỳ môn thể thao nào. Hỏi có bao nhiêu học sinh trong nhóm tham gia thi bóng bàn?
Đề khảo sát lần 1 Toán 10 năm 2023 - 2024 trường THPT Lục Nam - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng lần 1 môn Toán 10 năm học 2023 – 2024 trường THPT Lục Nam, tỉnh Bắc Giang; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận. Trích dẫn Đề khảo sát lần 1 Toán 10 năm 2023 – 2024 trường THPT Lục Nam – Bắc Giang : + Từ hai vị trí A B người ta quan sát một cái cây (hình vẽ). Lấy C là điểm gốc cây, D là điểm ngọn cây. Gọi A và B là hai điểm cùng thẳng hàng với điểm H thuộc chiều cao CD của cây sao cho AB CD tại H. Người ta đo được AB m 10 HC m 17 α 63 β 48. Chiều cao CD của cây gần với giá trị nào sau đây? + Lớp 10A có 37 học sinh làm bài kiểm tra môn toán. Đề bài gồm có 3 bài toán. Sau khi kiểm tra, cô giáo tổng hợp được kết quả như sau: Có 20 em giải được bài toán thứ nhất, 14 em giải được bài toán thứ hai, 10 em giải được bài toán thứ ba, 5 em giải được bài toán thứ hai và thứ ba, 2 em giải được bài toán thứ nhất và thứ hai, 6 em giải được bài toán thứ nhất và thứ ba, chỉ có 1 học sinh giải được cả ba bài toán. Hỏi lớp học đó có bao nhiêu học sinh không giải được bài toán nào? + Cho hàm số 2 yx x m 4 32 (với m là tham số). a) Tìm giá trị của tham số m để đồ thị hàm số đi qua điểm A(4;5). b) Tìm các giá trị của tham số m để đồ thị hàm số đã cho cắt trục hoành tại ít nhất một điểm có hoành độ thuộc khoảng (1;4).
Đề khảo sát lần 1 Toán 10 năm 2023 - 2024 trường THPT Khoái Châu - Hưng Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng lần 1 môn Toán 10 năm học 2023 – 2024 trường THPT Khoái Châu, tỉnh Hưng Yên; đề thi có đáp án trắc nghiệm mã đề 901. Trích dẫn Đề khảo sát lần 1 Toán 10 năm 2023 – 2024 trường THPT Khoái Châu – Hưng Yên : + Xét đường tròn đường kính AB 4 và một điểm M di chuyển trên đoạn AB đặt AM x 0 4 (hình vẽ). Xét hai đường tròn đường kính AM và MB. Kí hiệu S x là diện tích phần hình phẳng nằm trong hình tròn lớn và nằm ngoài hai hình tròn nhỏ. Giả sử tập các giá trị của x để diện tích S x nhỏ hơn một nửa tổng diện tích hai hình tròn nhỏ là x ab 0 4 với a b. Khi đó tổng a b là? + Gọi 1 2 x là hai nghiệm của phương trình 2 x mx m 2 10 M m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 1 2 x mx A x. Tính 2 SM m ta được? + Cho phương trình xm 4 30 (m tham số). Chỉ ra khẳng định đúng trong các khẳng định sau: A. Khi m 3 thì phương trình (*) có hai nghiệm không âm. B. Khi m 3 thì phương trình (*) có hai nghiệm âm. C. Khi 3 7 m thì phương trình (*) có hai nghiệm dương phân biệt. D. Khi m 3 thì phương trình (*) có hai nghiệm dương.