Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 12 lần 2 năm 2023 - 2024 trường THPT Nguyễn Thị Giang - Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng học sinh giỏi môn Toán 12 lần 2 năm học 2023 – 2024 trường THPT Nguyễn Thị Giang, tỉnh Vĩnh Phúc; đề thi có đáp án trắc nghiệm mã đề 101. Trích dẫn Đề học sinh giỏi Toán 12 lần 2 năm 2023 – 2024 trường THPT Nguyễn Thị Giang – Vĩnh Phúc : + Một người gửi ngân hàng 100 triệu đồng với lãi suất r = 0,5% một tháng. Biết rằng nếu không rút tiền khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó có nhiều hơn 125 triệu? A. 44 tháng. B. 46 tháng. C. 45 tháng. D. 47 tháng. + Số lượng xe ô tô vào một đường hầm được cho bởi công thức 2 290 4 v f v trong đó vm s là vận tốc trung bình của các xe khi đi vào đường hầm. Biết trong một giây, lưu lượng xe vào hầm ở thời điểm vận tốc trung bình của các xe đạt v ms 0 là kết quả của tính giới hạn 0 lim v (làm tròn kết quả đến hàng đơn vị). Lưu lượng xe vào hầm ở thời điểm vận tốc trung bình của các xe đạt 20(m s) là? + Trong một bài thi trắc nghiệm khách quan có 10 câu. Mỗi câu có bốn phương án trả lời, trong đó chỉ có một phương án đúng. Mỗi câu trả lời đúng thì được 1 điểm, trả lời sai thì bị trừ 0,5 điểm. Một thí sinh do không học bài nên làm bài bằng cách với mỗi câu đều chọn ngẫu nhiên một phương án trả lời. Xác suất để thí sinh đó làm bài được số điểm không nhỏ hơn 7 là?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra đội tuyển HSG Toán năm 2021 2022 trường chuyên Vị Thanh Hậu Giang
Nội dung Đề kiểm tra đội tuyển HSG Toán năm 2021 2022 trường chuyên Vị Thanh Hậu Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chất lượng đội tuyển học sinh giỏi môn Toán THPT năm học 2021 – 2022 trường THPT chuyên Vị Thanh, tỉnh Hậu Giang; kỳ thi được diễn ra vào ngày 01 tháng 03 năm 2022; đề thi có đáp án và thang điểm. Trích dẫn đề kiểm tra đội tuyển HSG Toán năm 2021 – 2022 trường chuyên Vị Thanh – Hậu Giang : + Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tính xác suất để có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm chia hết cho 10? + Trong mặt phẳng Oxy, biết một cạnh tam giác có trung điểm là M 1 1; hai cạnh kia nằm trên các đường thẳng 2 6 30 x y và x t 2 t y t. Hãy viết phương trình tham số của cạnh thứ ba của tam giác đó? + Cho hình chóp S ABCD có đáy là hình chữ nhật với AD a 3 AB 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa SD và mặt phẳng ABCD bằng 0 45. Tính khoảng cách giữa hai đường thẳng SD và BC.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT Kiên Giang
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT Kiên Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra trong hai ngày 24 và 25 tháng 11 năm 2021; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề chọn học sinh giỏi thành phố lớp 12 môn Toán năm 2021 2022 sở GD ĐT Hải Phòng
Nội dung Đề chọn học sinh giỏi thành phố lớp 12 môn Toán năm 2021 2022 sở GD ĐT Hải Phòng Bản PDF Thứ Ba ngày 18 tháng 01 năm 2022, sở Giáo dục và Đào tạo Hải Phòng tổ chức kỳ thi chọn học sinh giỏi cấp thành phố lớp 12 môn Toán năm học 2021 – 2022. Đề chọn học sinh giỏi thành phố Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng gồm 01 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn học sinh giỏi thành phố Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Có 15 người xếp thành một hàng dọc (vị trí của mỗi người trong hàng là cố định). Chọn ra 4 người trong hàng. Tính xác suất để 4 người được chọn không có hai người nào đứng cạnh nhau. + Cho hình lăng trụ đứng ABCD A B C D có đáy ABCD là hình thang cân, AD song song với BC, AB BC CD a AD a 2. Góc giữa hai mặt phẳng ACD và ABCD bằng 0 45. a) Tính khoảng cách từ B đến mặt phẳng A CD. b) Gọi P là mặt phẳng đi qua B và vuông góc với đường thẳng A C. Mặt phẳng P chia khối lăng trụ đã cho thành hai khối đa diện. Tính thể tích khối đa diện chứa đỉnh A. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC không có góc nào tù, nội tiếp đường tròn tâm I. Gọi D là chân đường phân giác trong của góc A D BC. Đường thẳng đi qua D và vuông góc với đường thẳng AI cắt đường thẳng AC tại điểm E. Tìm tọa độ các điểm A và C biết rằng A có tung độ âm và 1 5 0 1 1 0 2 B I E. File WORD (dành cho quý thầy, cô):
Đề lập đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT Bình Phước
Nội dung Đề lập đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT Bình Phước Bản PDF Đề lập đội tuyển thi HSG QG môn Toán năm 2021 – 2022 sở GD&ĐT Bình Phước gồm 02 trang với 07 bài toán dạng tự luận, kỳ thi được diễn ra trong hai ngày: 03/01/2022 và 04/01/2022.