Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

10 đề khảo sát chất lượng học sinh giỏi môn Toán 8 (nội dung HK1)

Tài liệu gồm 10 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập 10 đề khảo sát chất lượng học sinh giỏi môn Toán 8 (nội dung học kỳ 1); các đề được biên soạn bám sát cấu trúc đề thi chọn HSG Toán 8 của sở Giáo dục và Đào tạo tỉnh Thái Bình. Trích dẫn 10 đề khảo sát chất lượng học sinh giỏi môn Toán 8 (nội dung HK1): + Cho hình thang vuông ABCD vuông tại A và D có CD AB 2. Gọi H là hình chiếu của điểm D trên đường chéo AC, M là trung điểm của đoạn HC. Chứng minh rằng BMD 90. + Cho tam giác ABC, điểm M thuộc cạnh BC, gọi D là điểm đối xứng với M qua AB, E là điểm đối xứng của M qua AC. Vẽ hình bình hành MDNE. Chứng minh AN song song với BC. + Chứng minh rằng trong 5 số nguyên dương bất kỳ, tồn tại một số chia hết cho 5 hoặc một vài số có tổng chia hết cho 5.

Nguồn: toanmath.com

Đọc Sách

Đề Olympic lớp 8 môn Toán đợt 1 năm 2022 2023 phòng GD ĐT Ứng Hòa Hà Nội
Nội dung Đề Olympic lớp 8 môn Toán đợt 1 năm 2022 2023 phòng GD ĐT Ứng Hòa Hà Nội Bản PDF - Nội dung bài viết Đề Olympic Toán lớp 8 đợt 1 năm 2022 - 2023 phòng GD&ĐT Ứng Hòa - Hà Nội Đề Olympic Toán lớp 8 đợt 1 năm 2022 - 2023 phòng GD&ĐT Ứng Hòa - Hà Nội Chào các thầy cô giáo và các em học sinh lớp 8, hôm nay Sytu xin giới thiệu đến mọi người đề thi Olympic môn Toán lớp 8 đợt 1 năm học 2022 - 2023 do phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội tổ chức. Trích dẫn một số câu hỏi trong đề thi: 1) Tìm số dư trong phép chia biểu thức (x + 2)(x + 4)(x + 6)(x + 8) + 2023 cho đa thức x2 + 10x + 21. 2) Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Chứng minh tam giác ABP vuông cân. Tìm điểm thứ tư Q của hình bình hành APQB sao cho ba điểm H, I, E thẳng hàng. Xác định loại hình tứ giác HEKQ. 3) Chứng minh rằng số ở tâm (x) của hình vuông kỳ diệu bằng trung bình cộng của hai số còn lại cùng hàng, cùng cột hoặc cùng đường chéo. Hy vọng các em sẽ thực hiện bài thi tốt và rèn luyện kiến thức Toán một cách tích cực. Chúc các em thành công!
Đề khảo sát CLB lớp 8 môn Toán năm 2022 2023 trường THCS Cầu Giấy Hà Nội
Nội dung Đề khảo sát CLB lớp 8 môn Toán năm 2022 2023 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát CLB Toán lớp 8 năm 2022 - 2023 trường THCS Cầu Giấy - Hà Nội Đề khảo sát CLB Toán lớp 8 năm 2022 - 2023 trường THCS Cầu Giấy - Hà Nội Chào các thầy cô giáo và các bạn học sinh lớp 8! Dưới đây là đề khảo sát cho câu lạc bộ môn Toán lớp 8 của trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội. Hãy cùng thử sức và kiểm tra kiến thức của mình trong giai đoạn học kỳ 2 năm học 2022 - 2023! Trích dẫn đề khảo sát CLB Toán lớp 8 năm 2022 - 2023 trường THCS Cầu Giấy - Hà Nội: 1. Cho biểu thức M. Chúng ta cần rút gọn biểu thức M, tìm giá trị của a để biểu thức này lớn hơn 0, tìm a nguyên để M nhận giá trị nguyên, và tìm giá trị của a để biểu thức M đạt giá trị lớn nhất. 2. Cho tam giác ABC nhọn và các đường cao AD, BE, CF cắt nhau tại trực tâm H. Gọi M là trung điểm BC và K là điểm đối xứng với H qua M. Chúng ta cần chứng minh các tính chất của tứ giác BHCK, của IM là trung trực của EF, và suy ra AK vuông góc với EF. Cuối cùng, cần chứng minh góc BIT là góc vuông. 3. Trò chơi đầy thú vị trên bảng với các số 2022, 2023, 2024. Hãy đưa ra chiến thuật để bạn Đan là người chiến thắng trong trò chơi này, để có thể đưa một số về 0 và đạt chiến thắng. Hãy thử giải thích và đưa ra lời giải cho các câu hỏi trên. Chúc các bạn thành công!
Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Yên Phong Bắc Ninh
Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Yên Phong Bắc Ninh Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Yên Phong Bắc Ninh Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Yên Phong Bắc Ninh Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện cấp THCS môn Toán lớp 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Yên Phong, tỉnh Bắc Ninh. Kỳ thi sẽ diễn ra vào ngày 14 tháng 01 năm 2023. Đề thi bao gồm các câu hỏi sau: Xác định các số \( a \) và \( b \) sao cho đa thức \( x^3 + ax + b \) chia cho đa thức \( x + 1 \) có dư là 7, chia cho đa thức \( x - 3 \) có dư là -5. Tìm \( x \) thỏa mãn \( (x^2 - 4x)^2 + 2(x - 2)^2 = 43 \). Tìm tất cả các số nguyên \( x \), \( y \) sao cho \( (y + 2)x^2 + 1 = y^2 \). Tìm tất cả các số nguyên dương \( n \) sao cho số \( 9n + 11 \) viết được dưới dạng tích của \( k \) số tự nhiên liên tiếp với \( k \geq 2 \). Cho tam giác \( ABC \) sao cho \( AB < AC \). Vẽ ra phía ngoài tam giác \( ABC \) các hình vuông \( ABDE \), \( ACGH \). Chứng minh \( BH = EC \). Vẽ hình bình hành \( AEFH \). Chứng minh rằng \( AF \) vuông góc với \( BC \). Gọi \( O \) là giao điểm của các đường trung trực của tam giác \( ABC \), \( M \) và \( N \) lần lượt là trung điểm của \( EH \) và \( BC \), biết \( OH = OE \). Chứng minh tứ giác \( AMON \) là hình bình hành và tính góc \( BOC \). Hy vọng rằng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi Học sinh giỏi môn Toán sắp tới. Chúc các em thành công!
Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Như Thanh Thanh Hoá
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Như Thanh Thanh Hoá Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Như Thanh Thanh Hoá Đề học sinh giỏi lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Như Thanh Thanh Hoá Chào đón quý thầy cô và các em học sinh lớp 8, SYTU xin giới thiệu đề thi chọn học sinh giỏi văn hóa môn Toán lớp 8 cấp huyện năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Như Thanh, tỉnh Thanh Hoá. Kỳ thi sẽ diễn ra vào ngày 12 tháng 01 năm 2023. Đề thi bao gồm những câu hỏi thú vị như: Cho biểu thức A, rút gọn A và tìm số nguyên x để A chia hết cho 2. Tìm giá trị của biểu thức P khi đã biết a3 + b3 + c3 = 3abc với a, b, c là các số thực khác nhau. Tìm cặp số nguyên (x;y) thỏa mãn phương trình x3 + 3x = x2y + 2y + 5 và chứng minh x3 + 1 không chia hết cho y. Chứng minh tứ giác ABIM là hình bình hành, và chứng minh ba đường thẳng IN, MF, KE đồng quy khi tứ giác ABCD đặt ra điều kiện S = (a + b)2. Hy vọng đề thi sẽ giúp các em học sinh lớp 8 thách thức bản thân và phát triển khả năng toán học của mình. Chúc các em thi tốt!