Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Vũng Tàu BR VT

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Vũng Tàu BR VT Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 năm 2022 – 2023 phòng GD&ĐT Vũng Tàu – BR VT Đề học sinh giỏi Toán lớp 9 năm 2022 – 2023 phòng GD&ĐT Vũng Tàu – BR VT Chúng ta hãy cùng khám phá đề thi chọn học sinh giỏi cấp thành phố môn Toán lớp 9 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo UBND thành phố Vũng Tàu, tỉnh Bà Rịa – Vũng Tàu. Trong đề thi này, có những câu hỏi thú vị như: 1. Xét các số thực dương a, b thay đổi thỏa mãn a + b = ab. Hãy tìm giá trị nhỏ nhất của biểu thức P = 7/4.a + 5/4.b + 4/a + 2/b. 2. Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ đường cao AD của tam giác ABC và đường kính AK của đường tròn (O). Chứng minh ba điểm H, M, K thẳng hàng và tứ giác AMDE nội tiếp. 3. Chứng minh AB/AC = SB/SC trong tam giác ABC. 4. Tia SM cắt (O) tại T. Chứng minh tứ giác ABCT là hình thang cân. 5. Cho 2024 phân số gồm từ 1/2024 đến 2024/2024. Thực hiện thao tác xoá hai số a, b trong dãy và thay vào số a + b – 4ab cho đến khi chỉ còn duy nhất một số, hãy tìm số đó. Hy vọng rằng đề thi này sẽ giúp các em học sinh lớp 9 rèn luyện kỹ năng và chuẩn bị tốt cho các kì thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát đội tuyển HSG Toán 9 năm 2022 - 2023 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát đội tuyển học sinh giỏi môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 07 tháng 09 năm 2022. Trích dẫn đề khảo sát đội tuyển HSG Toán 9 năm 2022 – 2023 sở GD&ĐT Thanh Hóa : + Tìm nghiệm nguyên của phương trình: (x + y)2(1 + xy) + 4xy = 6(x + y). + Cho hai số tự nhiên a, b thỏa mãn: a3/(a + b); b3/(b + a) đều là số nguyên tố. Chứng minh rằng a2 + 2b + 1 là số chính phương. + Cho nửa đường tròn tâm O, đường kính AB = 2R. Điểm C di động trên nửa đường tròn(C khác A và B). Kẻ CH vuông góc AB (H thuộc AB). Tia phân giác của các góc CAB và CBA cắt nhau tại I và cắt các cạnh đối diện lần lượt tại E và F. Tia phân giác của góc CHA cắt AE tại J, tia phân giác của góc CHB cắt BF tại K. Đường thẳng JK cắt CA, CB lần lượt tại M, N. 1. Chứng minh tam giác HJK đồng dạng tam giác CAB. 2. Chứng minh: CI = JK. 3. Xác định vị trí của C trên nửa đường tròn để JK có độ dài lớn nhất.
Đề học sinh giỏi Toán cấp quận năm 2022 - 2023 phòng GDĐT Đống Đa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp quận năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi Toán cấp quận năm 2022 – 2023 phòng GD&ĐT Đống Đa – Hà Nội : + Cho các số thực a, b, c thỏa mãn 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = a2 + b2 + c2. + Tìm n là số tự nhiên sao cho 2^n – 1 chia hết cho 7. + Trên bảng viết 100 phân số. Ta thực hiện trò chơi như sau: tại mỗi bước, xóa đi hai số a, b bất kì trên bảng, nhưng lại viết thêm số (a − b + ab). Sau một số lần thực hiện quy tắc trên thì trên bảng còn lại đúng một số, chứng minh rằng đó là số tự nhiên.
Đề HSG Toán 9 vòng 1 năm 2022 - 2023 trường THCS Nguyễn Tri Phương - TT Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 1 năm học 2022 – 2023 trường THCS Nguyễn Tri Phương, tỉnh Thừa Thiên Huế. Trích dẫn Đề HSG Toán 9 vòng 1 năm 2022 – 2023 trường THCS Nguyễn Tri Phương – TT Huế : + Cho bốn số nguyên dương m, n, p, q thỏa điều kiện m3 = 2p3, n3 = 5q3. Chứng minh rằng tổng m + n + p + q là một hợp số. + Cho tam giác ABC có đường phân giác AD. Tính góc BAC biết AB = 4cm, AC = 5cm, BC = 6cm. Cho tam giác A’B’C’ có đường phân giác A’D’. Chứng minh rằng ABC đồng dạng A’B’C’. + Cho đoạn thẳng AB = 4cm, trên cùng một nửa mặt phẳng có bờ AB về hai tia Ax, By vuông góc với AB. Trên Ax lấy điểm D, trên By lấy điểm C sao cho BD vuông góc AC. Gọi E là giao điểm của BD và AC, F và H lần lượt là trung điểm của EB và EC. Biết 8FH = 9AD. Tính CD. Tính giá trị nhỏ nhất của AC + BD.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Hoàn Kiếm - Hà Nội (vòng 1)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND quận Hoàn Kiếm, thành phố Hà Nội (vòng 1); kỳ thi được diễn ra vào ngày 06 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Hoàn Kiếm – Hà Nội (vòng 1) : + Cho hình vuông ABCD, hai đường chéo AC và BD cắt nhau tại O. Lấy E là điểm bất kì thuộc đoạn OD. Trên tia đối của tia EC lấy điểm F sao cho OF = OC. Đường thẳng đi qua F và vuông góc với FO, cắt BD tại S. Kẻ FH vuông góc với BD tại H. 1) Chứng minh BFD = 90° và SD.SB= SH.SO. 2) Chứng minh FC là tia phân giác của góc BFD. 3) Kẻ ET vuông góc với BF tại T. Chứng minh: ST vuông góc với CF. + Tìm các số nguyên tố a, b sao cho a2 + 3ab + b2 là một số chính phương. + Cho 2022 điểm trên mặt phẳng, sao cho khi ta chọn ra ba điểm bất kỳ trong số chúng, ta đều được ba đỉnh của một tam giác có diện tích nhỏ hơn 1. Chứng minh tất cả các điểm này đều không nằm ngoài một tam giác có diện tích nhỏ hơn 4.