Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hình học không gian - Đặng Thành Nam

Tài liệu gồm 36 trang trình bày phương pháp giải các dạng toán hình học không gian và các ví dụ minh họa có lời giải chi tiết. Các nội dung chính trong tài liệu : Các yếu tố trong tam giác cần nắm vững Các công thức tính thể tích Phương pháp xác định chiều cao của khối chóp + Loại 1: Khối chóp có một cạnh vuông góc với đáy đó chính là chiều cao của khối chóp. + Loại 2: Khối chóp có một mặt bên vuông góc với đáy thì đường cao chính là đường kẻ từ đỉnh khối chóp đến giao tuyến của mặt bên đó với đáy khối chóp. + Loại 3: Khối chóp có hai mặt bên kề nhau cùng vuông góc với đáy thì đường cao chính là giao tuyến của hai mặt bên đó. + Loại 4: Khối chóp có các cạnh bên bằng nhau hoặc cùng tạo với đáy một góc bằng nhau thì đường cao là đường kẻ từ đỉnh khối chóp đến tâm vòng tròn ngoại tiếp đáy + Loại 5: Khối chóp có các mặt bên cùng tạo với đáy một góc bằng nhau thì đường cao là đường kẻ từ đỉnh đến tâm vòng tròn nội tiếp đáy. + Loại 6: Khối chóp có hai mặt bên cùng tạo với đáy một góc bằng nhau thì chân đường cao khối chóp hạ từ đỉnh sẽ nằm trên đường phân giác của góc tạo bởi hai cạnh nằm trên mặt đáy của hai mặt bên. Chẳng hạn khối chóp S.ABCD có hai mặt bên (SAC) và (SAB) cùng tạo với đáy góc a khi đó chân đường cao của khối chóp hạ từ đỉnh S nằm trên đường phân giác của góc BAC. + Loại 7: Khối chóp có hai cạnh bên bằng nhau hoặc cùng tạo với đáy một góc bằng nhau thì chân đường cao hạ từ đỉnh khối chóp nằm trên đường trung trực nối giữa hai giao điểm của hai cạnh bên với đáy. Chẳng hạn khối chóp S.ABCD có cạnh SB, SD khi đó chân đường cao của khối chóp hạ từ đỉnh S nằm trên đường trung trực của BD. Việc xác định chân đường cao của khối chóp giúp ta giải quyết bài toán [ads] + Tính thể tích khối chóp. + Tính góc tạo bởi đường thẳng hoặc mặt phẳng bên với đáy hoặc tính góc giữa hai mặt bên khối chóp(góc tạo bởi cạnh bên và mặt đáy chính là góc tạo bởi cạnh bên và đường thẳng nối chân đường cao khối chóp và giao điểm của cạnh bên với đáy). + Tính khoảng cách từ một điểm tới một mặt phẳng. Phương pháp tính thể tích khối đa diện + Khi xác định được chiều cao khối chóp thì áp dụng cách tính trực tiếp thể tích khối chóp. + Phân chia khối đa diện thành nhiều khối đa diện hơn và dễ tính thể tích hơn. + Dùng tỷ số thể tích. Khoảng cách từ một điểm đến một mặt phẳng Tìm tâm và bán kính mặt cầu ngoại tiếp khối đa diện Ví dụ minh họa có lời giải chi tiết Bài tập áp dụng tự luyện

Nguồn: toanmath.com

Đọc Sách

Chuyên đề mặt nón
Tài liệu gồm 31 trang được biên soạn bởi quý thầy, cô giáo trong nhóm Tài Liệu Dạy Thêm, bao gồm lý thuyết mặt nón, bài tập mẫu, bài tập tự luyện và bài tập trắc nghiệm chuyên đề mặt nón. Nội dung tài liệu : A. KIẾN THỨC CẦN NHỚ : Tóm tắt các khái niệm, tính chất, công thức tính diện tích – thể tích mặt nón, hình nón. 1. Mặt nón tròn xoay. 2. Hình nón tròn xoay. 3. Một số tính chất. 4. Công thức diện tích và thể tích của hình nón. B. BÀI TẬP MẪU C. BÀI TẬP TỰ LUYỆN D. BÀI TẬP TRẮC NGHIỆM 1. Tính diện tích, thể tích mặt nón đơn thuần. 2. Quay tam giác. 3. Mặt nón ngoại tiếp khối đa diện.
Trắc nghiệm nâng cao nón - trụ - cầu - Đặng Việt Đông
Tài liệu gồm 131 trang được biên soạn bởi thầy Đặng Việt Đông tuyển chọn các bài toán trắc nghiệm nâng cao nón – trụ – cầu có lời giải chi tiết trong chương trình Hình học 12 chương 2, các bài toán được chọn lọc từ các đề thi thử môn Toán, tài liệu thích hợp cho học sinh khá, giỏi ôn luyện điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia môn Toán. + Vấn đề 1. Mặt nón – khối nón + Vấn đề 2. Mặt trụ – khối trụ + Vấn đề 3. Mặt cầu – khối cầu + Vấn đề 4. Mặt tròn xoay – khối tròn xoay + Vấn đề 5. Ứng dụng thực tế Xem thêm :  Trắc nghiệm nâng cao hình học tọa độ Oxyz – Đặng Việt Đông (Hình học 12 chương 3)
Kỹ thuật tư duy và giải toán trắc nghiệm hình học không gian - Hà Duy Nghĩa
Tài liệu sáng kiến kinh nghiệm được biên soạn bởi thầy Hà Duy Nghĩa gồm 20 trang, trình bày một số kỹ thuật tư duy và giải toán trắc nghiệm hình học không gian. Tài liệu trình bày các vấn đề : + Bài toán liên quan đến thể tích khối đa diện: Trình bày một số kỹ thuật tính thể tích thông qua việc phân chia các thể tích cũng như tính tỉ số thể tích trực tiếp, gián tiếp và những ưu khuyết điểm của nó. + Bài toán liên quan đến tâm, bán kính mặt cầu ngoại tiếp hình đa diện: Trình bày về vấn đề hay gặp là tìm bán kính mặt cầu ngoại tiếp khối chóp và lăng trụ còn về tâm mặt cầu thì chỉ đề cập. + Bài toán liên quan đến hình tròn xoay: Trình bày một số bài toán liên quan đến thể tích các vật thể tròn xoay trong thực tế, các dạng bài tập tương tự như các bài trong đề thi minh họa và đề thử nghiệm.
Tài liệu chuyên Toán THPT chuyên đề Hình học không gian
Cuốn sách Tài liệu chuyên Toán THPT chuyên đề Hình học không gian gồm 160 trang được biên soạn bởi các tác giả Trần Đức Huyên, Nguyễn Duy Hiếu (trường THPT chuyên Lê Hồng Phong – TP. HCM nhằm giúp các em học sinh khối 11 – 12 cải thiện và nâng cao kỹ năng giải toán Hình học không gian và hướng đến kỳ thi THPTQG. Nội dung sách : Phần 1. Lý thuyết và phương pháp giải toán Chương 1. Hình lăng trụ Chương 2. Hình hộp Chương 3. Hình chóp Chương 4. Hình cầu Chương 5. Hình trụ Chương 6. Hình nón Chương 7. Các bài toán về khoảng cách Chương 8. Các bài toán về góc Phần 2. Ứng dụng để giải các đề tuyển sinh đại học [ads] Xem thêm : + Tài liệu chuyên Toán – Hình học 11 + Giải toán 12 nguyên hàm – tích phân – Trần Đức Huyên (Tài liệu cùng tác giả)