Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra KSCĐ lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Xuân Hòa Vĩnh Phúc

Nội dung Đề kiểm tra KSCĐ lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Xuân Hòa Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra khảo sát chuyên đề lần 1 môn Toán lớp 10 năm học 2023 – 2024 trường THPT Xuân Hòa, tỉnh Vĩnh Phúc; đề thi mã đề 103, gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn Đề kiểm tra KSCĐ lần 1 Toán lớp 10 năm 2023 – 2024 trường THPT Xuân Hòa – Vĩnh Phúc : + Sử dụng khái niệm “điều kiện cần” để phát biểu định lí sau: “Nếu hai tam giác bằng nhau thì chúng có diện tích bằng nhau”. Hãy chọn phát biểu đúng? A. Hai hình có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau. B. Hai tam giác bằng nhau là điều kiện cần và đủ để chúng có diện tích bằng nhau. C. Hai tam giác có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau. D. Hai tam giác bằng nhau là điều kiện cần để chúng có diện tích bằng nhau. + Lớp 10A có 45 học sinh trong đó có 25 em học giỏi môn Toán, 23 em học giỏi môn Lý, 20 em học giỏi môn Hóa, 11 em học giỏi cả môn Toán và môn Lý, 8 em học giỏi cả môn Lý và môn Hóa, 9 em học giỏi cả môn Toán và môn Hóa. Hỏi lớp 10A có bao nhiêu bạn học giỏi cả ba môn Toán, Lý, Hóa, biết rằng mỗi học sinh trong lớp học giỏi ít nhất một trong 3 môn Toán, Lý, Hóa? + Một công ty TNHH trong một đợt quảng cáo và bán khuyến mãi hàng hóa (1 sản phẩm mới của công ty) cần thuê xe để chở trên 140 người và trên 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B . Trong đó xe loại A có 10 chiếc, xe loại B có 9 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu, loại B giá 3 triệu. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí vận chuyển là thấp nhất. Biết rằng xe A chỉ chở tối đa 20 người và 0,6 tấn hàng. Xe B chở tối đa 10 người và 1,5 tấn hàng. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG lớp 10 môn Toán lần 2 năm 2020 2021 trường THPT Đồng Đậu Vĩnh Phúc
Nội dung Đề thi HSG lớp 10 môn Toán lần 2 năm 2020 2021 trường THPT Đồng Đậu Vĩnh Phúc Bản PDF Đề thi HSG Toán lớp 10 lần 2 năm học 2020 - 2021 trường THPT Đồng Đậu - Vĩnh Phúc Đề thi HSG Toán lớp 10 lần 2 năm học 2020 - 2021 của trường THPT Đồng Đậu - Vĩnh Phúc là một bộ đề gồm 10 bài toán dạng tự luận trên 01 trang. Thời gian làm bài thi là 180 phút. Đề thi cung cấp đáp án, lời giải chi tiết và hướng dẫn chấm điểm để học sinh tự kiểm tra và tự đánh giá kết quả của mình. Trong đề thi, học sinh sẽ được đưa ra các bài toán đa dạng về các chủ đề trong môn Toán như hình học, đại số, lượng giác, v.v. Học sinh sẽ phải sử dụng kiến thức đã học để giải quyết các bài toán này một cách logic và chính xác. Ví dụ về một số câu hỏi trong đề thi: Cho hình chữ nhật ABCD có AB = 2AD, BC = a. Tìm giá trị nhỏ nhất của độ dài vectơ u = MA + 2MB + 3MC, trong đó M là điểm thay đổi trên đường thẳng BC. Cho tam giác ABC vuông tại A, G là trọng tâm tam giác ABC. Tính độ dài cạnh AB biết cạnh AC = a và góc giữa hai véc tơ GB và GC là nhỏ nhất. Cho tam giác ABC cân tại A, nội tiếp đường tròn tâm O. Chứng minh rằng OE vuông góc AD, trong đó D là trung điểm của AB, E là trọng tâm tam giác ADC. Đề thi HSG Toán lớp 10 lần 2 năm học 2020 - 2021 trường THPT Đồng Đậu - Vĩnh Phúc không chỉ giúp học sinh rèn luyện kỹ năng giải các bài toán mà còn giúp học sinh phát triển tư duy logic, sáng tạo và khả năng giải quyết vấn đề.
Đề thi học sinh giỏi cấp trường lớp 10 môn Toán năm 2020 2021 trường chuyên Bắc Ninh
Nội dung Đề thi học sinh giỏi cấp trường lớp 10 môn Toán năm 2020 2021 trường chuyên Bắc Ninh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi cấp trường lớp 10 môn Toán năm 2020 2021 trường chuyên Bắc Ninh Đề thi học sinh giỏi cấp trường lớp 10 môn Toán năm 2020 2021 trường chuyên Bắc Ninh Đề thi học sinh giỏi cấp trường Toán lớp 10 năm học 2020 – 2021 trường THPT chuyên Bắc Ninh được thiết kế gồm 01 trang bài toán dạng tự luận, đòi hỏi học sinh phải suy nghĩ sáng tạo và có kiến thức chắc chắn. Thời gian làm bài của học sinh là 180 phút, đủ để giải quyết vấn đề phức tạp. Trích dẫn câu hỏi trong đề thi: + Bài 1: Cho các số nguyên dương được viết vào 441 ô của bảng vuông 21×21. Mỗi hàng và mỗi cột có nhiều nhất 6 giá trị khác nhau. Bạn hãy chứng minh rằng tồn tại một số nguyên có mặt ở ít nhất 3 cột và ít nhất 3 hàng. + Bài 2: Tam giác ABC có tâm đường tròn ngoại tiếp là O, tâm đường tròn nội tiếp tam giác là I. Hãy chứng minh rằng AIOd ≤ 90◦ khi và chỉ khi AB + AC ≥ 2BC. + Bài 3: Cho a, b, c là các số thực dương thỏa mãn ab + bc + ca = 3abc. Bạn hãy tìm giá trị nhỏ nhất của biểu thức P. Đề thi này không chỉ đòi hỏi sự hiểu biết sâu rộng của học sinh về các kiến thức toán học mà còn thách thức họ trong việc suy luận logic và giải quyết vấn đề. Chắc chắn rằng các thí sinh sẽ phải mất rất nhiều công sức để có thể hoàn thành tốt bài thi này.
Đề thi học sinh giỏi tỉnh lớp 10 môn Toán năm 2020 2021 sở GD ĐT Hà Tĩnh
Nội dung Đề thi học sinh giỏi tỉnh lớp 10 môn Toán năm 2020 2021 sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi tỉnh lớp 10 môn Toán năm 2020-2021 Đề thi học sinh giỏi tỉnh lớp 10 môn Toán năm 2020-2021 Đề thi học sinh giỏi tỉnh Toán lớp 10 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian cho học sinh làm bài thi là 180 phút, kỳ thi diễn ra vào sáng thứ Sáu ngày 12 tháng 03 năm 2021. Trích dẫn một số câu hỏi trong đề thi học sinh giỏi tỉnh Toán lớp 10 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh: + Câu 1: Một cửa hàng kinh doanh xe máy điện mua vào với chi phí 23 triệu đồng và bán ra với giá 27 triệu đồng mỗi chiếc. Nếu giảm giá bán xe xuống 100 nghìn đồng mỗi chiếc, số lượng xe bán ra trong một năm sẽ tăng thêm 20 chiếc. Hỏi doanh nghiệp cần bán với giá mới là bao nhiêu để lợi nhuận thu được sau khi giảm giá là cao nhất? + Câu 2: Cho tam giác ABC có góc A = 30 độ, bán kính đường tròn nội tiếp tam giác là √3. Tính giá trị của T = (sin B)^2 - (cos C)^2 và bán kính đường tròn ngoại tiếp tam giác ABC. + Câu 3: Trong mặt phẳng tọa độ Oxy, cho A(2;3), B(-1;5) và đường thẳng d: 2x + y + 1 = 0. Tìm tọa độ điểm C thuộc đường thẳng d và tọa độ điểm D thuộc đoạn thẳng AC, biết tam giác ABC cân tại B và DC = √5/5. Đây là một đề thi mang tính chất thách thức, đòi hỏi học sinh có kiến thức sâu rộng và khả năng suy luận logic tốt để giải quyết các bài toán phức tạp. Hy vọng rằng các em sẽ đạt kết quả cao và phấn đấu học tập toàn diện hơn sau kỳ thi này.
Đề thi HSG cấp trường lớp 10 môn Toán năm 2020 2021 trường Cẩm Xuyên Hà Tĩnh
Nội dung Đề thi HSG cấp trường lớp 10 môn Toán năm 2020 2021 trường Cẩm Xuyên Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi HSG cấp trường lớp 10 môn Toán năm 2020-2021 trường Cẩm Xuyên Hà Tĩnh Đề thi HSG cấp trường lớp 10 môn Toán năm 2020-2021 trường Cẩm Xuyên Hà Tĩnh Vào ngày ... tháng 01 năm 2021, trường THPT Cẩm Xuyên tỉnh Hà Tĩnh đã tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán cho học sinh lớp 10 năm học 2020-2021. Đề thi HSG cấp trường môn Toán lớp 10 năm 2020-2021 của trường Cẩm Xuyên Hà Tĩnh bao gồm 01 trang với 07 bài toán dạng tự luận. Thời gian làm bài là 150 phút. Đề thi đi kèm với lời giải chi tiết và hướng dẫn chấm điểm. Một số câu hỏi trong đề thi HSG cấp trường lớp 10 môn Toán năm 2020-2021 của trường Cẩm Xuyên Hà Tĩnh: Cho hình vuông ABCD có cạnh bằng a. Gọi G là trọng tâm tam giác ABC và M, N là hai điểm lần lượt thuộc hai cạnh AB, CD sao cho AB = 6BM, DC = 3DN. Hãy tính độ dài của vectơ AB + AD theo a và chứng minh ba điểm M, N, G thẳng hàng. Cho hàm số y = x2 + mx + 1 (m là tham số). Hãy lập bảng biến thiên của hàm số khi m = -4 và tìm điều kiện của tham số m để đồ thị của hàm số cắt đường thẳng y = x + 1 tại hai điểm phân biệt nằm về một phía của trục hoành. Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ. Chứng minh rằng phương trình (1 - c)x2 + (2 - b)x + 1 - a = 0 luôn có hai nghiệm phân biệt. Đề thi HSG cấp trường lớp 10 môn Toán năm 2020-2021 của trường Cẩm Xuyên Hà Tĩnh cung cấp cho học sinh cơ hội thách thức tư duy và khám phá sự sáng tạo trong việc giải quyết các bài toán Toán học phức tạp.