Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số phương pháp giải bài toán phương trình nghiệm nguyên

Tài liệu gồm 67 trang, hướng dẫn một số phương pháp giải bài toán phương trình nghiệm nguyên, kèm các ví dụ minh họa có đáp số và hướng dẫn giải chi tiết. I. MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN Phương pháp 1 . Sử dụng các tính chất về quan hệ chia hết. Khi giải các phương trình nghiệm nguyên cần vận dụng linh hoạt các tính chất về chia hết, đồng dư, tính chẵn lẻ,… để tìm ra điểm đặc biệt của các ẩn số cũng như các biểu thức chứa ẩn trong phương trình, từ đó đưa phương trình về các dạng mà ta đã biết cách giải hoặc đưa về những phương trình đơn giản hơn. + Xét số dư hai vế của phương trình để chỉ ra phương trình không có nghiệm, tính chẵn lẻ của các vế. + Đưa phương trình về dạng phương trình ước số. + Phát hiện tính chia hết của các ẩn. + Sử dụng tính đồng dư của các đại lượng nguyên. Phương pháp 2 . Đưa hai vế về tổng các bình phương. Ý tưởng của phương pháp là biến đổi phương trình về dạng vế trái là tổng của các bình phương và vế phải là tổng của các số chính phương. Phương pháp 3 . Sử dụng các tính chất của số chính phương. Một số tính chất của số chính phương thường được dùng trong giải phương trình nghiệm nguyên. + Một số tính chất về chia hết của số chính phương. + Nếu 2 2 a n a1 với a là số nguyên thì n không thể là số chính phương. + Nếu hai số nguyên dương nguyên tố cùng nhau có tích là một số chính phương thì mỗi số đếu là số chính phương. + Nếu hai số nguyên liên tiếp có tích là một số chính phương thì một trong hai số nguyên đó bằng 0. Phương pháp 4 . Phương pháp đánh giá. Trong khi giải các phương trình nghiệm nguyên rất cần đánh giá các miền giá trị của các ẩn, nếu số giá trị mà biến số có thể nhận không nhiều có thể dùng phương pháp thử trực tiếp để kiểm tra. Để đánh giá được miền giá trị của biến số cần vận dụng linh hoạt các tính chất chia hết, đồng dư, bất đẳng thức. + Phương pháp sắp thứ tự các ẩn. + Xét khoảng giá trị của các ẩn. + Sử dụng các bất đẳng thức Cauchy, Bunhiacopxki. Phương pháp 5 . Sử dụng tính chất của phương trình bậc hai. Ý tưởng của phương pháp là quy phương trình đã cho về dạng phương trình bậc hai một ẩn, các ẩn còn lại đóng vai trò tham số. Khi đó các tính chất của phương trình bậc hai thường được sử dụng dưới các dạng như sau: + Sử dụng điều kiện có nghiệm ∆ ≥ 0 của phương trình bậc hai. + Sử dụng hệ thức Vi – et. + Sử dụng điều kiện ∆ là số chính phương. Phương pháp 6 . Phương pháp lùi dần vô hạn. Ý tưởng của phương pháp lùi dần vô hạn có thể hiểu như sau: Giả sử (x y z 0 0 0) là nghiệm của f x y z 0. Nhờ những biến đổi và suy luận số học ta tìm được một nghiệm khác (x y z 1 1 1) sao cho các nghiệm quan hệ với bộ nghiệm đầu tiên bởi một tỉ số k nào đó, chẳng hạn 0 1 0 10 1 x kx y ky z kz. Lập luận tương tự ta lại được bộ số nguyên (x y z 2 2 2) thỏa mãn 1 2 1 11 2 x kx y ky z kz. Quá trình cứ tiếp tục dẫn đến 0 00 x y z cùng chia hết cho n k với n là một số tự nhiên tuỳ ý. Điều này xảy ra khi và chỉ khi xyz0. Để rõ ràng hơn ta xét các ví dụ sau. II. MỘT SỐ DẠNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN Phương trình nghiệm nguyên rất đa dạng và phong phú, nó có thể là phương trình một ẩn hay nhiều ẩn. Nó có thể là phương trình bậc nhất hoặc bậc cao. Cũng có những phương trình dạng đa thức hoặc dạng lũy thừa. Ta có thể chia phương trình nghiệm nguyên thành một số dạng như sau. 1. Phương trình nghiệm nguyên dạng đa thức. 2. Phương trình nghiệm nguyên dạng phân thức. 3. Phương trình nghiệm nguyên có chứa căn. 4. Phương trình nghiệm nguyên dạng lũy thừa. 5. Hệ phương trình nghiệm nguyên.

Nguồn: toanmath.com

Đọc Sách

Chùm bài toán tiếp tuyến - cát tuyến ôn thi vào lớp 10 môn Toán
Tài liệu gồm 44 trang, được biên soạn bởi thầy giáo Nguyễn Chí Thành, tuyển chọn 114 bài toán tiếp tuyến – cát tuyến ôn thi vào lớp 10 môn Toán, đây là dạng toán phổ biến trong các đề thi tuyển sinh lớp 10 môn Toán. Trích dẫn tài liệu chùm bài toán tiếp tuyến – cát tuyến ôn thi vào lớp 10 môn Toán: + Cho O R và điểm M nằm ngoài đường tròn. Kẻ tiếp tuyến MB với đường tròn dây BC vuông góc OM tại H. + Từ M kẻ cát tuyến MDD (tia MD nằm giữa tia MB và MO) gọi D1 là trung điểm DD OD BC D 1 2. Chứng minh các điểm 1 O C M B D cùng nằm trên một đường tròn, các điểm 1 2 M H D D cùng nằm trên một đường tròn. Chỉ ra các điểm 1 O C M B D đều cách đều trung điểm của OM (dựa vào tính chất trung tuyến tam giác vuông) hoặc các đỉnh 1 C B D đều nhìn MO dưới một góc vuông. Chỉ ra các điểm 1 2 M H D D đều cách đều trung điểm của D M2 (dựa vào tính chất trung tuyến tam giác vuông) hoặc 0 2 1 2 MHD MD D 90. + Đề bài có thể thay đổi thành: Chứng minh đường tròn ngoại tiếp HD D hoặc D OD luôn đi qua một điểm cố định hoặc tâm đường tròn ngoại tiếp HD D luôn chạy trên một đường thẳng cố định. Các em sẽ thấy, tứ giác OHDD là tứ giác nội tiếp nên đường tròn ngoại tiếp tam giác HD D luôn đi qua điểm cố định O và đường tròn ngoại tiếp tam giác OD D luôn đi qua điểm cố định H. Vì OHDD là tứ giác nội tiếp nên tâm đường tròn ngoại tiếp HD D luôn nằm trên đường trung trực đoạn OH.
102 bài toán bất đẳng thức và giá trị lớn nhất, giá trị nhỏ nhất chọn lọc
Tài liệu gồm 58 trang, được tổng hợp bởi thầy giáo Cù Minh Quảng, tuyển tập 102 bài toán bất đẳng thức và giá trị lớn nhất, giá trị nhỏ nhất chọn lọc, có đáp án và lời giải chi tiết, giúp học sinh ôn tập để chuẩn bị cho kỳ thi chọn học sinh giỏi Toán bậc THCS các cấp và ôn thi vào lớp 10 môn Toán.
Phương trình nghiệm nguyên chọn lọc
Tài liệu gồm 218 trang, tuyển tập các chủ đề phương trình nghiệm nguyên chọn lọc, giúp học sinh ôn tập để chuẩn bị cho kỳ thi chọn học sinh giỏi Toán bậc THCS các cấp và ôn thi vào lớp 10 môn Toán. MỤC LỤC : Phần 1 MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN 1. 1 PHƯƠNG PHÁP XÉT TÍNH CHIA HẾT 2. A Phương pháp phát hiện tính chia hết của một ẩn 2. B Phương pháp đưa về phương trình ước số 2. C Phương pháp biểu thị một ẩn theo ẩn còn lại rồi dùng tính chia hết 3. D Phương pháp xét số dư của từng vế 4. 2 PHƯƠNG PHÁP DÙNG BẤT ĐẲNG THỨC 8. A Phương pháp sắp thứ tự các ẩn 8. B Phương pháp xét từng khoảng giá trị của ẩn 9. C Phương pháp chỉ ra nghiệm nguyên 10. D Phương pháp sử dụng điều kiện để phương trình bậc hai có nghiệm 10. 3 PHƯƠNG PHÁP DÙNG TÍNH CHẤT CỦA SỐ CHÍNH PHƯƠNG 17. A Sử dụng tính chất về chia hết của số chính phương 17. B Tạo ra bình phương đúng 17. C Tạo ra tổng các số chính phương 18. D Xét các số chính phương liên tiếp 18. E Sử dụng điều kiện biệt số ∆ là số chính phương 19. F Sử dụng tính chất: 20. G Sử dụng tính chất: 21. 4 PHƯƠNG PHÁP LÙI VÔ HẠN, NGUYÊN TẮC CỰC HẠN 28. Phần 2 MỘT SỐ DẠNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN 32. 1 PHƯƠNG TRÌNH MỘT ẨN 32. 2 PHƯƠNG TRÌNH BẬC NHẤT VỚI HAI ẨN 35. A Cách giải phương trình bậc nhất hai ẩn ax + by = c với nghiệm nguyên (a, b, c thuộc Z) 36. 3 PHƯƠNG TRÌNH BẬC HAI VỚI HAI ẨN 39. 4 PHƯƠNG TRÌNH BẬC BA HAI ẨN 57. 5 PHƯƠNG TRÌNH BẬC BỐN VỚI HAI ẨN 66. 6 PHƯƠNG TRÌNH ĐA THỨC VỚI BA ẨN TRỞ LÊN 76. 7 PHƯƠNG TRÌNH PHÂN THỨC 85. 8 PHƯƠNG TRÌNH MŨ 93. 9 PHƯƠNG TRÌNH VÔ TỈ 104. 10 HỆ PHƯƠNG TRÌNH VỚI NGHIỆM NGUYÊN 114. 11 TÌM ĐIỀU KIỆN ĐỂ PHƯƠNG TRÌNH CÓ NGHIỆM NGUYÊN 118. Phần 3 BÀI TOÁN ĐƯA VỀ GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN 125. 1 BÀI TOÁN VỀ SỐ TỰ NHIÊN VÀ CÁC CHỮ SỐ 125. 2 BÀI TOÁN VỀ TÍNH CHIA HẾT VÀ SỐ NGUYÊN TỐ 138. 3 BÀI TOÁN THỰC TẾ 152. Phần 4 PHƯƠNG TRÌNH NGHIỆM NGUYÊN MANG TÊN CÁC NHÀ TOÁN HỌC 159. 1 THUẬT TOÁN EUCLIDE VÀ PHƯƠNG PHÁP TÌM NGHIỆM RIÊNG ĐỂ GIẢI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 159. A Mở đầu 159. B Cách giải tổng quát 160. C Ví dụ 161. D Cách tìm một nghiệm riêng của phương trình ax + by = c 161. 2 PHƯƠNG TRÌNH PELL 166. A Mở đầu 166. B Phương trình Pell 166. 3 PHƯƠNG TRÌNH PYTHAGORE 170. A Mở đầu 170. 4 PHƯƠNG TRÌNH FERMAT 175. A Định lí nhỏ Fermat 175. B Định lí lớn Fermat 175. C Lịch sử về chứng minh định lí lớn Fermat 176. D Chứng minh định lí lớn Fermat với n=4 177. 5 PHƯƠNG TRÌNH DIONPHANTE 180. Phần 5 NHỮNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN CHƯA CÓ LỜI GIẢI 182. 1 CÒN NHIỀU PHƯƠNG TRÌNH NGHIỆM NGUYÊN CHƯA GIẢI ĐƯỢC 182. A Phương trình bậc ba với hai ẩn 182. B Phương trình bậc bốn với hai ẩn 183. C Phương trình bậc cao với hai ẩn 183. D Phương trình với ba ẩn trở lên 184. 2 NHỮNG BƯỚC ĐỘT PHÁ 185. Phần 6 PHƯƠNG TRÌNH NGHIỆM NGUYÊN QUA CÁC KỲ THI 187. 1 Trong các đề thi vào lớp 10 187. 2 Trong các đề thi học sinh giỏi quốc gia và quốc tế 209.
Trọng tâm kiến thức và các dạng đề ôn thi vào lớp 10 môn Toán
Tài liệu gồm 242 trang, được biên soạn bởi các tác giả: Trần Hữu Tháp (Chủ biên), Nguyễn Văn Chi, Huỳnh Thanh Hùng, Hồ Tấn Yên, Định Văn Thân, Đoàn Văn Trúc; trình bày trọng tâm kiến thức và các dạng đề ôn thi vào lớp 10 môn Toán. Nội dung của tài liệu này dựa trên chương trình bộ môn Toán cấp THCS (trọng tâm là lớp 9) hiện hành và hướng dẫn nội dung ôn thi vào lớp 10 của sở Giáo dục và Đào tạo tỉnh Quảng Ngãi. Cấu trúc của tài liệu gồm có bốn phần chính: + Phần một : Đại số. + Phần hai : Hình học. + Phần ba : Số học và toán suy luận lô-gic (dành cho học sinh khá – giỏi). + Phần tư : Một số đề thi vào lớp 10 THPT và THPT chuyên Lê Khiết. Mục lục tài liệu trọng tâm kiến thức và các dạng đề ôn thi vào lớp 10 môn Toán: Lời nói đầu 3. Phần một . ĐẠI SỐ. Chủ đề 1. Biến đổi biểu thức đại số. I. Kiến thức cần sử dụng 5. II. Các dạng toán thường gặp 5. III. Bài tập vận dụng 11. Chủ đề 2. Phương trình và Hệ phương trình. I. Kiến thức cần sử dụng 14. II. Các dạng toán thường gặp 15. III. Bài tập vận dụng 30. Chủ đề 3. Hàm số và đồ thị. I. Kiến thức cần sử dụng 35. II. Các dạng toán thường gặp 35. III. Bài tập vận dụng 41. Chủ đề 4. Bất đẳng thức − Bất phương trình. I. Kiến thức cần sử dụng 43. II. Các dạng toán thường gặp 44. III. Bài tập vận dụng 50. Gợi ý − Hướng dẫn giải phần Đại số 52. Phần hai . HÌNH HỌC. Chủ đề 1. Tính toán các đại lượng hình học. I. Kiến thức cần sử dụng 94. II. Các dạng toán thường gặp 94. III. Bài tập vận dụng 110. Chủ đề 2. Chứng minh các yếu tố hình học, quan hệ hình học. I. Kiến thức cần sử dụng 112. II. Các dạng toán thường gặp 112. III. Bài tập vận dụng 142. Chủ đề 3. Tập hợp điểm. I. Kiến thức cần sử dụng 147. II. Các dạng toán thường gặp 147. III. Bài tập vận dụng 157. Chủ đề 4. Cực trị hình học. I. Kiến thức cần sử dụng 158. II. Các dạng toán thường gặp 158. III. Bài tập vận dụng 170. Gợi ý − Hướng dẫn giải phần Hình học 177. Phần ba . SỐ HỌC. Chủ đề 1 . Tính chia hết – Đồng dư thức. 1. Phương pháp giải 201. 2. Các ví dụ 201. 3. Bài tập tự luyện 205. Chủ đề 2 . Số nguyên tố – Hợp số – Số chính phương. 1. Phương pháp giải 206. 2. Các ví dụ 206. 3. Bài tập tự luyện 208. Chủ đề 3 . Phương trình nghiệm nguyên. 1. Phương pháp giải 209. 2. Các ví dụ 209. 3. Bài tập tự luyện 212. Chủ đề 4 . Toán suy luận lô-gic. 1. Phương pháp giải 212. 2. Các ví dụ 213. 3. Bài tập tự luyện 218. Gợi ý − Hướng dẫn giải phần Số học 220. Phần bốn . Một số đề thi vào lớp 10 THPT và THPT chuyên Lê Khiết 229.