Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

395 bài tập trắc nghiệm thể tích khối đa diện cơ bản - Nguyễn Bảo Vương

Tài liệu 395 bài tập trắc nghiệm thể tích khối đa diện cơ bản – Nguyễn Bảo Vương gồm 85 trang với phần tóm tắt lý thuyết, công thức tính và 395 bài tập trắc nghiệm thể tích khối đa diện cơ bản, dành cho học sinh trung bình, có đáp án ở cuối tài liệu. Nội dung tài liệu : + ÔN TẬP 1: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 9-10 + ÔN TẬP 2: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 11 A. QUAN HỆ SONG SONG §1. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG I. Định nghĩa: Đường thẳng và mặt phẳng gọi là song song với nhau nếu chúng không có điểm nào chung. II. Các định lý Định lý 1 : Nếu đường thẳng d không nằm trên mp(P) và song song với đường thẳng a nằm trên mp(P) thì đường thẳng d song song với mp(P). Định lý 2 : Nếu đường thẳng a song song với mp(P) thì mọi mp(Q) chứa a mà cắt mp(P) thì cắt theo giao tuyến song song với a. Định lý 3 : Nếu hai mặt phẳng cắt nhau cùng song song với một đường thẳng thì giao tuyến của chúng song song với đường thẳng đó. §2.HAI MẶT PHẲNG SONG SONG I. Định nghĩa: Hai mặt phẳng được gọi là song song với nhau nếu chúng không có điểm nào chung. II. Các định lý Định lý 1 : Nếu mp(P) chứa hai đường thẳng a, b cắt nhau và cùng song song với mặt phẳng (Q) thì (P) và (Q) song song với nhau. Định lý 2 : Nếu một đường thẳng nằm một trong hai mặt phẳng song song thì song song với mặt phẳng kia. Định lý 3 : Nếu hai mặt phẳng (P) và (Q) song song thì mọi mặt phẳng (R) đã cắt (P) thì phải cắt (Q) và các giao tuyến của chúng song song. [ads] B. QUAN HỆ VUÔNG GÓC §1. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG I. Định nghĩa: Một đường thẳng được gọi là vuông góc với một mặt phẳng nếu nó vuông góc với mọi đường thẳng nằm trên mặt phẳng đó. II. Các định lý Định lý 1 : Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mp(P) thì đường thẳng d vuông góc với mp(P). Định lý 2 : (Ba đường vuông góc) Cho đường thẳng a không vuông góc với mp(P) và đường thẳng b nằm trong (P). Khi đó, điều kiện cần và đủ để b vuông góc với a là b vuông góc với hình chiếu a’ của a trên (P). §2.HAI MẶT PHẲNG VUÔNG GÓC I. Định nghĩa: Hai mặt phẳng được gọi là vuông góc với nhau nếu góc giữa chúng bằng 90 độ. II. Các định lý Định lý 1: Nếu một mặt phẳng chứa một đường thẳng vuông góc với một mặt phẳng khác thì hai mặt phẳng đó vuông góc với nhau. Định lý 2: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau thì bất cứ đường thẳng a nào nằm trong (P), vuông góc với giao tuyến của (P) và (Q) đều vuông góc với mặt phẳng (Q). Định lý 3: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau và A là một điểm trong (P) thì đường thẳng a đi qua điểm A và vuông góc với (Q) sẽ nằm trong (P). Định lý 4: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba. §3.KHOẢNG CÁCH 1. Khoảng cách từ 1 điểm tới 1 đường thẳng, đến 1 mặt phẳng: Khoảng cách từ điểm M đến đường thẳng a (hoặc đến mặt phẳng (P)) là khoảng cách giữa hai điểm M và H, trong đó H là hình chiếu của điểm M trên đường thẳng a ( hoặc trên mp(P)). 2. Khoảng cách giữa đường thẳng và mặt phẳng song song: Khoảng cách giữa đường thẳng a và mp(P) song song với a là khoảng cách từ một điểm nào đó của a đến mp(P). 3. Khoảng cách giữa hai mặt phẳng song song: là khoảng cách từ một điểm bất kỳ trên mặt phẳng này đến mặt phẳng kia. 4.Khoảng cách giữa hai đường thẳng chéo nhau: là độ dài đoạn vuông góc chung của hai đường thẳng đó. §4.GÓC 1. Góc giữa hai đường thẳng a và b là góc giữa hai đường thẳng a’ và b’ cùng đi qua một điểm và lần lượt cùng phương với a và b. 2. Góc giữa đường thẳng a không vuông góc với mặt phẳng (P) là góc giữa a và hình chiếu a’ của nó trên mp(P). 3. Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó. 4. Diện tích hình chiếu: Gọi S là diện tích của đa giác (H) trong mp(P) và S’ là diện tích hình chiếu (H’) của (H) trên mp(P’) thì S’ = Scosα, trong đó α là góc giữa hai mặt phẳng (P) và (P’). ÔN TẬP 3: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 12 A. THỂ TÍCH KHỐI ĐA DIỆN LOẠI 1: THỂ TÍCH LĂNG TRỤ Dạng 1. Khối lăng trụ đứng có chiều cao hay cạnh đáy Dạng 2. Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng. Dạng 3. Lăng trụ đứng có góc giữa 2 mặt phẳng Dạng 4. Khối lăng trụ xiên LOẠI 2: THỂ TÍCH KHỐI CHÓP Dạng 1. Khối chóp có cạnh bên vuông góc với đáy Dạng 2. Khối chóp có một mặt bên vuông góc với đáy Dạng 3. Khối chóp đều Dạng 4. Khối chóp & phương pháp tỷ số thể tích

Nguồn: toanmath.com

Đọc Sách

Lý thuyết và bài tập hình học không gian - Nguyễn Tất Đỉnh
Tài liệu gồm 64 trang tổng hợp lý thuyết, phân dạng toán và tuyển chọn bài tập trắc nghiệm hình học không gian, tài liệu được biên soạn bởi thầy Nguyễn Tất Đỉnh. Nội dung tài liệu : + Phần 1. Tổng hợp lý thuyết khối đa diện và các kiến thức liên quan. + Phần 2. Phân dạng bài toán hình học không gian kèm các ví dụ minh họa có lời giải. + Phần 3. Tuyển chọn bài tập trắc nghiệm hình không gian có đáp án và lời giải chi tiết. [ads] Xem thêm : + Bài tập trắc nghiệm khối đa diện, mặt nón, mặt trụ và mặt cầu – Trần Đình Cư + Bài tập trắc nghiệm chuyên đề khối đa diện, mặt nón – trụ – cầu – Đặng Việt Đông + Chuyên đề hình học không gian dành cho học sinh trung bình – yếu
Bài tập trắc nghiệm khối đa diện và khối tròn xoay - Nguyễn Khánh Nguyên
Tài liệu gồm 40 trang với 300 bài tập trắc nghiệm chủ đề khối đa diện và khối tròn xoay trích trong các đề thi thử THPT Quốc gia. + Chủ đề 1. Khối đa diện + Chủ đề 2. Khối chóp + Chủ đề 3. Thể tích lăng trụ + Chủ đề 4. Khoảng cách + Chủ đề 5. Khối tròn xoay + Chủ đề 6. Khối nón + Chủ đề 7. Khối trụ + Chủ đề 8. Khối cầu + Chủ đề 9. Hỗn hợp: Nón – Trụ – Cầu + Chủ đề 10. Toán thực tế [ads] Trích dẫn tài liệu : + [CHUYÊN TRẦN PHÚ – 2017] Từ một nguyên vật liệu cho trước, một công ty muốn thiết kế bao bì để đựng sữa với thể tích 1dm2. Bao bì được thiết kế bởi một trong hai mô hình sau: hình hộp chữ nhật có đáy là hình vuông hoặc hình trụ. Hỏi thiết kế theo mô hình nào sẽ tiết kiệm được nguyên vật liệu nhất? Và thiết kế mô hình đó theo kích thước như thế nào? A. Hình hộp chữ nhật và cạnh bên bằng cạnh đáy B. Hình trụ và chiều cao bằng bán kính đáy C. Hình hộp chữ nhật và cạnh bên gấp hai lần cạnh đáy D. Hình trụ và chiều cao bằng đường kính đáy + [ĐỒNG ĐẬU – 2017] Trong các mệnh đề sau, mệnh đề nào sai? A. Hình tạo bởi một số hữu hạn các đa giác được gọi là hình đa diện B. Khối đa diện bao gồm phần không gian được giới hạn bởi hình đa diện và cả hình đa diện đó C. Mỗi cạnh của một đa giác trong hình đa diện là cạnh chung của đúng hai đa giác D. Hai đa giác bất kì trong một hình đa diện hoặc là không có điểm chung, hoặc là có một đỉnh chung, hoặc là có một cạnh chung + [QUỐC HỌC HUẾ – 2017] Trong không gian cho hai điểm phân biệt A, B cố định. Tìm tập hợp tất cả các điểm M trong không gian thỏa mãn vtMA.vtMB = 3/4.AB^2 A. Mặt cầu đường kính AB B. Tập hợp rỗng (tức là không có điểm M nào thỏa mãn điều kiện trên) C. Mặt cầu có tâm I là trung điểm của đoạn thẳng AB và bán kính R = AB D. Mặt cầu có tâm I là trung điểm của đoạn thẳng AB và bán kính R = 3/4AB
Bài tập trắc nghiệm khối đa diện, mặt nón, mặt trụ và mặt cầu - Trần Đình Cư
Tài liệu tóm tắt lý thuyết, phân dạng, phương pháp giải và bài tập trắc nghiệm các dạng toán về khối đa diện, mặt nón, mặt trụ và mặt cầu. Chương 1. Khối đa diện Bài 1. Khái niệm về khối đa diện Bài 2. Khối đa diện lồi và khối đa diện đều Bài 3. Khái niệm về thể tích khối đa diện Vấn đề 1. Thể tích khối chóp + Dạng 1. Khối chóp có cạnh bên vuông góc đáy + Dạng 2. Khối chóp có hình chiếu của đỉnh lên mặt phẳng đáy + Dạng 3. Khối chóp có mặt bên vuông góc với đáy + Dạng 4. Khối chóp đều + Dạng 5. Tỉ lệ thể tích [ads] Vấn đề 2. Thể tích khối lăng trụ + Dạng 1. Khối lăng trụ đứng + Dạng 2. Khối lăng trụ đều + Dạng 3. Khối lăng trụ xiên Chương 2. Mặt nón, mặt trụ và mặt cầu Bài 1. Khái niệm về mặt tròn xoay Vấn đề 1. Mặt nón, hình nón và khối nón Vấn đề 2. Mặt trụ – hình trụ và khối trụ Bài 2. Mặt cầu + Dạng 1. Hình chóp có các đỉnh nhìn hai đỉnh còn lại dưới 1 góc vuông + Dạng 2. Hình chóp có các cạnh bên bằng nhau + Dạng 3. Mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy + Dạng 4. Mặt cầu ngoại tiếp hình chóp có mặt bên vuông góc với mặt đáy
Lý thuyết và bài tập trắc nghiệm chuyên đề khối đa diện - Huỳnh Đức Khánh
Tài liệu gồm 65 trang bao gồm tóm tắt lý thuyết và bài tập trắc nghiệm chọn lọc chuyên đề khối đa diện. Nội dung tài liệu gồm các phần: Bài 01. Khái niệm về khối đa diện I – Khối lăng trụ V1 khối chóp II – Khái niệm về hình đa diện V1 khối đa diện III – Hai đa diện bằng nhau IV – Phân chia V1 lắp ghép các khối đa diện Một số kết quản quan trọng Câu hỏi trắc nghiệm Bài 02. Khối đa diện lồi và khối đa diện đều I – Khối đa diện lồi II – Khối đa diện đều Câu hỏi trắc nghiệm [ads] Bài 03. Khái niệm về thể tích khối đa diện I – Nhắc lại một số định nghĩa II – Thể tích III – Tỉ số thể tích Câu hỏi trắc nghiệm + Vấn đề 1. Thể tích khối chóp + Vấn đề 2. Thể tích lăng trụ đứng + Vấn đề 3. Thể tích lăng trụ xiên + Vấn đề 4. Tỉ số thể tích