Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi kiến thức lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Quận 1 TP HCM

Nội dung Đề thi kiến thức lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Quận 1 TP HCM Bản PDF - Nội dung bài viết Đề thi kiến thức lớp 8 môn Toán năm 2016 - 2017 phòng GD ĐT Quận 1 TP HCM Đề thi kiến thức lớp 8 môn Toán năm 2016 - 2017 phòng GD ĐT Quận 1 TP HCM Ngày 23 tháng 03 năm 2017, phòng Giáo dục và Đào tạo Quận 1, thành phố Hồ Chí Minh đã tổ chức kỳ thi kiến thức ngày hội học sinh cấp Trung học Cơ sở môn Toán lớp 8 năm học 2016 - 2017. Đề thi kiến thức Toán môn Toán lớp 8 năm 2016 - 2017 của phòng GD&ĐT Quận 1 - TP HCM đã được công bố với đáp án và lời giải chi tiết. Trong đề thi, có một số câu hỏi thú vị như sau: + Đề bài 1: Khối lớp 8 của một trường THCS có bốn lớp 81, 82, 83 và 84. Trung bình cộng số học sinh của bốn lớp là 39,5. Nếu chuyển 4 em từ lớp 81 sang lớp 82 thì số học sinh của hai lớp bằng nhau. Số học sinh lớp 83 bằng trung bình cộng số học sinh hai lớp 81 và 82. Số học sinh lớp 84 bằng trung bình cộng số học sinh hai lớp 82 và 83. Hãy tìm số học sinh ban đầu của mỗi lớp. + Đề bài 2: Cho tam giác nhọn ABC, BD và CE là hai đường cao cắt nhau tại H. a) Chứng minh rằng: tam giác HED đồng dạng với tam giác HBC. b) Gọi M là trung điểm của cạnh BC, N là điểm trên tia đối của tia HA. Đường thẳng qua N vuông góc với MH cắt AB, AC lần lượt tại I, K. Chứng minh rằng: N là trung điểm của IK. + Đề bài 3: Cho tam giác đều ABC, điểm M nằm trong tam giác ABC. Vẽ MD vuông góc với BC tại D, ME vuông góc với AC tại E, MF vuông góc với AB tại F. Đặt MD = x, ME = y, MF = z. a) Chứng minh rằng x + y + z không phụ thuộc vào vị trí của điểm M. b) Xác định vị trí của điểm M sao cho tổng bình phương x2 + y2 + z2 đạt giá trị nhỏ nhất. Đề thi này không chỉ giúp học sinh rèn luyện và kiểm tra kiến thức mà còn khuyến khích họ tìm hiểu sâu và áp dụng lý thuyết vào thực hành. Chắc chắn rằng đề thi sẽ đem lại nhiều trải nghiệm bổ ích cho các em học sinh.

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 8 cấp huyện năm 2020 - 2021 phòng GDĐT Ba Vì - Hà Nội
Thứ Năm ngày 22 tháng 04 năm 2021, phòng GD&ĐT huyện Ba Vì, thành phố Hà Nội tổ chức kỳ thi Olympic cấp huyện môn Toán lớp 8 năm học 2020 – 2021. Đề thi Olympic Toán 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi Olympic Toán 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội : + Tìm các số nguyên x, y thỏa mãn: xy – 4 = 2x + 3y. + Tìm các số nguyên x sao cho A = x(x – 1)(x – 7)(x – 8) là một số chính phương. + Cho hình thoi ABCD có BAD = 60°. Qua C vẽ đường thẳng d bất kì không cắt cạnh của hình thoi ABCD, nhưng d cắt tia AB tại E và cắt tia AD tại F. a) Chứng minh BCE đồng dạng DFC. b) Chứng minh BD2 = BE.DF. c) Gọi I là giao điểm của BF và DE. Tính số đo góc EIF.
Đề thi Olimpic Toán 8 năm 2020 - 2021 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olimpic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội. Trích dẫn đề thi Olimpic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội : + Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết cho 48. + Một mảnh đất hình thang ABCD có AB//CD, AB = BC = AD = a, CD = 2a. a/ Tính các góc của hình thang ABCD. b/ Tính diện tích của hình thang ABCD theo a. c/ Hãy chia mảnh đất ABCD thành 4 mảnh đất hình thang giống hệt nhau bằng nhau. + Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD = AB, CE = 1/3.AC, CD và BE cắt nhau tại I. Tính các tỷ số.
Đề thi Olympic Toán 8 năm 2020 - 2021 phòng GDĐT Gia Lâm - Hà Nội
Đề thi Olympic Toán 8 năm 2020 – 2021 phòng GD&ĐT Gia Lâm – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2021.
Đề thi HSG huyện Toán 8 năm 2020 - 2021 phòng GDĐT Hà Trung - Thanh Hóa
Thứ Sáu ngày 09 tháng 04 năm 2021, phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa tổ chức kỳ thi giao lưu học sinh giỏi các môn văn hóa lớp 8 cấp huyện năm học 2020 – 2021. Đề thi HSG huyện Toán 8 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG huyện Toán 8 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa : + Cho tam giác đều ABC. Gọi O là trung điểm của BC. Trên cạnh AB và AC lần lượt lấy các điểm di động M và N sao cho MON = 600. Chứng minh rằng: 1) OMB đồng dạng với ONC từ đó suy ra tích BM.CN không đổi. 2) Các tia MO, NO lần lượt là tia phân giác của góc BMN và CNM. 3) Chu vi tam giác AMN không đổi. + Xác định đa thức f(x) biết: f(x) chia cho x – 1 dư 4; chia cho x + 2 dư 1 và chia cho x2 + x – 2 được thương là 5x. + Tìm số tự nhiên k để 4 7 2 2 2 k là số chính phương.