Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Trà Ôn Vĩnh Long

Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Trà Ôn Vĩnh Long Bản PDF - Nội dung bài viết Đề thi học sinh giỏi lớp 9 môn Toán năm 2022-2023 phòng GD&ĐT Trà Ôn Vĩnh Long Đề thi học sinh giỏi lớp 9 môn Toán năm 2022-2023 phòng GD&ĐT Trà Ôn Vĩnh Long Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi vòng huyện môn Toán lớp 9 năm học 2022-2023 do phòng Giáo dục và Đào tạo huyện Trà Ôn, tỉnh Vĩnh Long tổ chức. Đề thi được biên soạn theo hình thức tự luận với 6 bài toán, thời gian làm bài 150 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn một số câu hỏi trên Đề học sinh giỏi huyện Toán lớp 9 năm 2022-2023 phòng GD&ĐT Trà Ôn - Vĩnh Long: Chứng minh rằng $2^{70} + 3^{70}$ chia hết cho 13. Tìm nghiệm nguyên của phương trình: $2(x + y) + 1 = 3xy$. Cho M bất kì trên đường tròn tâm O đường kính AB. Tiếp tuyến tại M và tại B của (O) cắt nhau tại D. Qua O kẻ đường thẳng vuông góc với OD cắt MD tại C và cắt BD tại N. Chứng minh rằng B, D, M, O cùng thuộc một đường tròn. Chứng minh DC = DN. Chứng minh AC là tiếp tuyến của đường tròn tâm O. Gọi H là chân đường vuông góc kẻ từ M xuống AB, I là trung điểm của MH. Chứng minh B, C, I thẳng hàng. Cho các số thực dương x, y, z thỏa mãn $x + 2y + 3z \geq 20$. Tìm giá trị nhỏ nhất của biểu thức $A = x + y + z + \frac{3}{x} + \frac{9}{2y} + \frac{4}{z}$. Đề thi sẽ giúp các em ôn tập và rèn luyện kỹ năng giải các bài toán phức tạp, đồng thời nắm vững kiến thức Toán lớp 9. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 9 cấp huyện năm 2021 - 2022 phòng GDĐT Sơn Động - Bắc Giang
Đề thi HSG Toán 9 cấp huyện năm 2021 – 2022 phòng GD&ĐT Sơn Động – Bắc Giang được biên soạn theo hình thức đề thi trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 6,0 điểm, phần tự luận gồm 04 câu, chiếm 14,0 điểm, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 16 tháng 10 năm 2021, đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Thái Hòa - Nghệ An
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Thái Hòa – Nghệ An gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi học sinh giỏi huyện Toán 9 năm 2021 - 2022 phòng GDĐT Như Thanh - Thanh Hoá
Đề thi học sinh giỏi huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Như Thanh – Thanh Hoá gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Như Thanh – Thanh Hoá : + Tìm tất cả số nguyên tố p sao cho 4p2 + 1 và 6p2 + 1 đều là các số nguyên tố. + Cho nửa đường tròn tâm O đường kính AB = 2R. EF là dây cung di động trên nửa đường tròn sao cho E thuộc cung AF và EF = AB/2. Gọi H là giao điểm của AF, BE, C là giao điểm của AE, BF, I là giao điểm của CH, AB. 1. Chứng minh rằng tam giác ACI và tam giác ABE đồng dạng với nhau. 2. Đường thẳng AF cắt tiếp tuyến tại B ở N, các tiếp tuyến tại A, F của (O) cắt nhau ở M. Chứng minh: ON MB. 3. Xác định vị trí EF trên nửa đường tròn để tứ giác ABEF có diện tích lớn nhất. + Cho a, b, c là các số thực dương thỏa mãn: abc = 1. Hãy tìm giá trị nhỏ nhất của biểu thức P.
Đề thi chọn học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Gio Linh - Quảng Trị
Đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Gio Linh – Quảng Trị gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Bảy ngày 23 tháng 10 năm 2021. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Gio Linh – Quảng Trị : + Tìm số tự nhiên n sao cho n2 + 2n + 30 là số chính phương. + Cho tứ giác ABCD. Qua B, vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt DC tại E. Chứng minh rằng: Diện tích tam giác ADE bằng diện tích tứ giác ABCD. + Cho tam giác ABC có AB < AC, phân giác AD. Gọi E là trung điểm của BC. Qua E, vẽ đường thẳng song song với DA, đường thẳng này cắt các đường thẳng AB, AC lần lượt tại G và F. Chứng minh rằng: BG = FC.