Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 12 lần 1 năm 2019 - 2020 trường Đồng Đậu - Vĩnh Phúc

Nhằm đáp ứng yêu cầu kiểm tra đánh giá chất lượng học tập trong giai đoạn giữa học kỳ 1 đối với học sinh khối 12, ngày … tháng 10 năm 2019, trường THPT Đồng Đậu, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán 12 năm học 2019 – 2020 lần thứ nhất. Đề khảo sát chất lượng Toán 12 lần 1 năm học 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc có mã đề 120, đề gồm 06 trang với 50 câu trắc nghiệm, ngoài các kiến thức Toán 12 học sinh đã học, đề thi còn các câu hỏi và bài toán thuộc chương trình Toán 11, điều này giúp học sinh khối 12 được rèn luyện thường xuyên để hướng đến kỳ thi THPT Quốc gia môn Toán năm 2020, đề thi có đáp án. Trích dẫn đề khảo sát chất lượng Toán 12 lần 1 năm 2019 – 2020 trường Đồng Đậu – Vĩnh Phúc : + Ông An gửi 320 triệu đồng vào ngân hàng ACB và VietinBank theo phương thức lãi kép. Số tiền thứ nhất gửi vào ngân hàng ACB với lãi suất 2,1% một quý trong thời gian 15 tháng. Số tiền còn lại gửi vào ngân hàng VietinBank với lãi suất 0,73% một tháng trong thời gian 9 tháng. Biết tổng số tiền lãi ông An nhận được ở hai ngân hàng là 26670725,95 đồng. Hỏi số tiền ông An lần lượt ở hai ngân hàng ACB và VietinBank là bao nhiêu (số tiền được làm tròn tới hàng đơn vị)? A. 120 triệu đồng và 200 triệu đồng. B. 200 triệu đồng và 120 triệu đồng. C. 140 triệu đồng và 180 triệu đồng. D. 180 triệu đồng và 140 triệu đồng. [ads] + Đợt xuất khẩu gạo của tỉnh Vĩnh Phúc thường kéo dài trong 2 tháng (60 ngày). Người ta nhận thấy số lượng xuất khẩu gạo tính theo ngày thứ t được xác định bởi công thức S(t) = t^3 – 72t^2 + 405t + 3100 (1 ≤ t ≤ 60). Hỏi trong mấy ngày đó thì ngày thứ mấy có số lượng xuất khẩu gạo cao nhất? + Một sợi dây có chiều dài 28m được cắt thành hai đoạn để làm thành một hình vuông và một hình tròn. Tính chiều dài (theo đợn vị mét) của đoạn dây làm thành hình vuông được cắt ra sao cho tổng diện tích của hình vuông và hình tròn là nhỏ nhất?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GDĐT Quảng Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở Giáo dục và Đào tạo tỉnh Quảng Bình (mã đề 002); kỳ thi được diễn ra vào thứ Tư ngày 18 tháng 05 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GD&ĐT Quảng Bình : + Trong không gian với hệ trục Oxyz cho mặt cầu(S): (x − 1)2 + (y − 1)2 + (z − 1)2 = 12 và mặt phẳng (P): x − 2y + 2z + 11 = 0. Xét điểm M di động trên (P), các điểm A B C phân biệt di động trên (S) sao cho MA, MB, MC là các tiếp tuyến của (S). Mặt phẳng (ABC) luôn đi qua điểm cố định nào dưới đây? + Có bao nhiêu số nguyên dương a sao cho ứng với mỗi a có không quá 20 số nguyên b thỏa mãn. + Từ một đội văn nghệ có 5 nam và 8 nữ, cần lập một nhóm 4 người hát tốp ca một cách ngẫu nhiên. Xác suất để trong 4 người được chọn có ít nhất 3 nam bằng?
Đề thi thử TN THPT 2022 môn Toán lần 1 trường THPT Thị xã Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán lần 1 trường THPT Thị xã Quảng Trị; đề thi có đáp án mã đề 001 – 002 – 003 – 004. Trích dẫn đề thi thử TN THPT 2022 môn Toán lần 1 trường THPT Thị xã Quảng Trị : + Trong không gian (Oxyz) cho mặt phẳng P xyz 2 10 0, điểm A(3;0;4) thuộc (P) và đường thẳng 1 2 x t d yt t z t. Gọi ∆ là đường thẳng nằm trong (P) và đi qua A sao cho khoảng cách giữa hai đường thẳng d và ∆ lớn nhất. Véc tơ nào dưới đây là véc tơ chỉ phương của đường thẳng ∆? + Cho hình trụ (T) có O và O’ lần lượt là tâm hai đường tròn đáy. Tam giác ABC nội tiếp trong đường tròn tâm O AB a 2 1 sin 3 ACB và OO′ tạo với mặt phẳng (O’AB) một góc o 30. Thể tích khối trụ (T) bằng? + Hàm số y fx có đồ thị như hình vẽ. Khẳng định nào sau đây đúng? A. Đồ thị hàm số có điểm cực đại là 1 1. B. Đồ thị hàm số có điểm cực tiểu là 1 1. C. Đồ thị hàm số có điểm cực tiểu là 1 1. D. Đồ thị hàm số có điểm cực tiểu là 1 3.
Đề thi thử TN THPT 2022 môn Toán lần 2 trường THPT chuyên ĐH Vinh - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán lần 2 trường THPT chuyên Đại học Vinh, tỉnh Nghệ An; đề thi mã đề 132 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian giao đề). Trích dẫn đề thi thử TN THPT 2022 môn Toán lần 2 trường THPT chuyên ĐH Vinh – Nghệ An : + Trong không gian Oxyz, cho mặt phẳng 2 2 16 0 P x y z và mặt cầu 2 2 2 2 1 3 21 S x y z. Một khối hộp chữ nhật H có bốn đỉnh nằm trên mặt phẳng P và bốn đỉnh còn lại nằm trên mặt cầu S. Khi H có thể tích lớn nhất, thì mặt phẳng chứa bốn đỉnh của H nằm trên mặt cầu S là 2 0 Q x by cz d. Giá trị b c d bằng? + Lớp 12A có 22 học sinh gồm 15 nam và 7 nữ. Cần chọn và phân công 4 học sinh lao động trong đó có 1 bạn lau bảng, 1 bạn lau bàn và 2 bạn quét nhà. Có bao nhiêu cách chọn và phân công sao cho trong 4 học sinh đó có ít nhất một bạn nữ? + Cho hàm số y f x có đạo hàm là 2 2 f x x x x 9 9 với mọi x. Có bao nhiêu giá trị nguyên của tham số m để hàm số 3 2 g x f x x m m 3 2 có không quá 6 điểm cực trị?
Đề thi thử tốt nghiệp THPT 2022 môn Toán sở GDĐT Ninh Bình (lần 2)
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán sở Giáo dục và Đào tạo tỉnh Ninh Bình lần thứ hai; đề thi mã đề 001 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề), đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào thứ Bảy ngày 14 tháng 05 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán sở GD&ĐT Ninh Bình (lần 2) : + Môn bóng đá nam tại SEA Games 31 có 10 đội tuyển tham dự, chia thành 2 bảng, mỗi bảng 5 đội. Ở vòng bảng, hai đội bất kì trong cùng một bảng sẽ gặp nhau một lần. Tính tổng số trận đấu ở vòng bảng môn bóng đá nam tại SEA Games 31? + Trong không gian Oxyz, cho hai điểm A(1; 5; 2) và B(5; 13; 10). Có bao nhiêu điểm I(a; b; c) với a, b, c là các số nguyên sao cho có mặt cầu tâm I đi qua A, B và tiếp xúc với mặt phẳng (Oxy). + Cho hàm số y = f(x) = 16×3 + ax2 + bx + c có đồ thị cắt trục hoành tại ba điểm phân biệt. Biết hàm số g(x) = [f0(x)]2 − 2f00(x)f(x) + [f000(x)]2 có 3 điểm cực trị x1 < x2 < x3 và g (x1) = 2, g (x2) = 5, g (x3) = 1. Diện tích hình phẳng giới hạn bởi đồ thị hàm số h(x) = f(x) g(x) + 1 và trục Ox bằng?