Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Hương Trà TT Huế

Nội dung Đề thi học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Hương Trà TT Huế Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm 2021 - 2022 Đề thi học sinh giỏi Toán lớp 8 năm 2021 - 2022 Sytu xin được giới thiệu đến quý thầy cô và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp thị xã môn Toán lớp 8 năm học 2021 - 2022 của phòng Giáo dục và Đào tạo Hương Trà, TT Huế. Trích dẫn một số câu hỏi từ đề thi: 1. Tìm giá trị của m để phương trình 6x - 5m = 3 + 3mx có nghiệm số gấp ba nghiệm số của phương trình. 2. Cho P = n^4 + 4. Tìm tất cả các số tự nhiên n để P là số nguyên tố. 3. Tam giác ABC nhọn. a) Tính tổng độ dài ba đường cao AA', BB', CC'; H là trực tâm. b) Chứng minh AN.BI.CM = BN.IC.AM. c) Chứng minh AN là phân giác của tam giác ABC; IM, IN thứ tự là phân giác của AIC và AIB. Đây là một đề thi đa dạng, thách thức và phù hợp cho các học sinh lớp 8 tham gia cuộc thi học sinh giỏi môn Toán. Chúc các em học sinh sẽ vượt qua thử thách và đạt kết quả tốt trong kì thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi lần 2 Toán 8 năm 2022 - 2023 phòng GDĐT Thủ Đức - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi lần thứ 2 môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Thủ Đức, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi lần 2 Toán 8 năm 2022 – 2023 phòng GD&ĐT Thủ Đức – TP HCM : + Cho tam giác ABC có ba góc nhọn (AB < AC) có ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: BFC đồng dạng BDA và BFD = ACB. b) Tia EF cắt đường thẳng BC tại K. Chứng minh: CD.FK = CK.FD. c) Gọi M là trung điểm của BC. Qua M vẽ đường thẳng vuông góc với HM, đường thẳng này cắt các đường thẳng AB, AD, AC lần lượt tại P, Q, R. Chứng minh: PQ = QR. + Hai địa điểm A và B cách nhau 200 km. Cùng một lúc một xe ô tô khởi hành từ A và một xe máy khởi hành từ B đi ngược chiều nhau. Xe ô tô và xe máy gặp nhau tại điểm C cách A 120 km. Nếu xe ô tô khởi hành sau xe máy một giờ thì sẽ gặp nhau tại điểm D cách C một khoảng là bao nhiêu km? Biết rằng vận tốc của xe ô tô lớn hơn vận tốc của xe máy là 20 km/h. + Cho tứ giác ABCD có các điểm M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Gọi I là điểm nằm trong tứ giác ABCD. Tính diện tích tứ giác ABCD biết SAMIQ = 32 (cm2), SBMIN = 50 (cm2) và SDPIQ = 20 (cm2).
Đề học sinh giỏi Toán THCS năm 2022 - 2023 phòng GDĐT thành phố Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán THCS cấp thành phố năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Thanh Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 10 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi Toán THCS năm 2022 – 2023 phòng GD&ĐT thành phố Thanh Hóa : + Tìm nghiệm nguyên của phương trình: x2y2 = 4x2y – y3 – 4×2 + 3y2 − 1. + Cho số tự nhiên n ≥ 2 và số nguyên tố p thoả mãn p − 1 chia hết cho n đồng thời n3 − 1 chia hết cho p. Chứng minh rằng: n + p là một số chính phương. + Cho hình vuông ABCD cạnh a. Trên cạnh BC lấy điểm M (khác B và C), qua điểm A kẻ tia Ax vuông góc với AM cắt tia CD tại điểm F. 1) Chứng minh rằng: AM = AF. 2) Trên cạnh CD lấy điểm N sao cho MAN = 45°, gọi giao điểm của AM, AN với BD lần lượt tại Q và P; gọi I là giao điểm của MP và NQ. Chứng minh: AI vuông góc MN tại H. 3) Tìm giá trị nhỏ nhất của diện tích tam giác AMN khi M, N thay đổi.
Đề HSG cấp huyện Toán 8 năm 2022 - 2023 phòng GDĐT Anh Sơn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Anh Sơn, tỉnh Nghệ An. Trích dẫn Đề HSG cấp huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Anh Sơn – Nghệ An : + Tìm n thuộc N để giá trị biểu thức sau là số nguyên tố C = n3 – n2 + n – 1. + Cho hình chữ nhật ABCD. Trên đường chéo BD lấy điểm P. Gọi M là điểm đối xứng với C qua P. Gọi E và F lần lượt là hình chiếu của M lên AB, AD. Chứng minh rằng: a) Tứ giác AEMF là hình chữ nhật b) Tứ giác ADBM là hình thang c) Ba điểm E, F, P thẳng hàng. + Cho hình thang ABCD (AB // CD). Gọi O là giao điểm hai đường chéo AC và BD. Từ A vẽ đường thẳng song song với BC cắt BD tại E. Từ B vẽ đường thẳng song song với AD cắt AC tại G. Chứng minh rằng: a) OE/OB = OG/OA. b) AB2 = EG.DC.
Đề HSG Toán 8 vòng 2 năm 2022 - 2023 trường THCS Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán 8 vòng 2 năm học 2022 – 2023 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 8 vòng 2 năm 2022 – 2023 trường THCS Trần Mai Ninh – Thanh Hóa : + Cho số thực x khác 0 thỏa mãn 2 x x và x3 đều là số hữu tỉ. Chứng minh rằng x là số hữu tỉ. + Cho S là tập hợp các số nguyên dương n có dạng 2 2 nx y 3 trong đó x, y là các số nguyên. Chứng minh rằng nếu A S và A là số chẵn thì A chia hết cho 4 và 4 A S. + Cho tam giác ABC vuông cân tại A. Gọi M, N lần lượt là trung điểm của AB và AC. Vẽ NH vuông góc với CM tại H, HE vuông góc với AB tại E. Trên tia NH lấy điểm K sao cho NK = CM. a) Chứng minh tứ giác ABKC là hình vuông b) Chứng minh HM là tia phân giác của góc BHE c) Giả sử 0 AHC 135. Chứng minh 222 2HA HB HC.