Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề công thức nghiệm của phương trình bậc hai

Nội dung Tài liệu lớp 9 môn Toán chủ đề công thức nghiệm của phương trình bậc hai Bản PDF Tài liệu lớp 9 môn Toán với chủ đề công thức nghiệm của phương trình bậc hai cung cấp kiến thức cần nhớ, các dạng toán và bài tập chi tiết để học sinh hiểu rõ về phương trình bậc hai.

I. Kiến thức cần nhớ:

1. Phương trình bậc hai một ẩn:
- Phương trình bậc hai một ẩn là phương trình có dạng \(ax^2 + bx + c = 0\).
- Để giải phương trình bậc hai một ẩn, ta cần tìm tập nghiệm của phương trình đó.

2. Công thức nghiệm của phương trình bậc hai:
- Xét phương trình bậc hai \(ax^2 + bx + c = 0\) và biệt thức \(\Delta = b^2 - 4ac\).
- Nếu \(\Delta < 0\), phương trình vô nghiệm.
- Nếu \(\Delta = 0\), phương trình có nghiệm kép.
- Nếu \(\Delta > 0\), phương trình có hai nghiệm phân biệt.

3. Công thức nghiệm thu gọn của phương trình bậc hai:
- Xét phương trình bậc hai \(ax^2 + bx + c = 0\) với \(b = \frac{b}{2}\).
- Trong trường hợp \(\Delta < 0\), phương trình vô nghiệm.
- Trong trường hợp \(\Delta = 0\), phương trình có nghiệm kép: \(x = \frac{-b}{2a}\).
- Trong trường hợp \(\Delta > 0\), phương trình có hai nghiệm phân biệt: \(x = \frac{-b \pm \sqrt{\Delta}}{2a}\).

II. Bài tập và các dạng toán:
- Tài liệu cung cấp các dạng toán như: giải phương trình bậc hai một ẩn, sử dụng công thức nghiệm, xác định số nghiệm của phương trình, chứng minh phương trình có nghiệm, vô nghiệm.
- Học sinh có thể tự ôn tập và làm bài tập về nhà để nắm vững kiến thức.

Tài liệu lớp 9 môn Toán với chủ đề công thức nghiệm của phương trình bậc hai là nguồn tư liệu hữu ích giúp học sinh hiểu rõ về phương trình bậc hai và rèn luyện kỹ năng giải các dạng toán liên quan.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn
Tài liệu gồm 28 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 5. A. TÓM TẮT LÝ THUYẾT Dấu hiệu 1. Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng âỳ là một tiếp tuyến của đường tròn. Dấu hiệu 2. Theo định nghĩa tiếp tuyến. B. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Chứng minh một đường thẳng là tiếp tuyến của một đường tròn. Phương pháp giải: Để chứng minh đường thẳng a là tiếp tuyến của đường tròn (O;R) tại tiếp điểm C, ta có thể làm theo một trong các cách sau: + Cách 1. Chứng minh C nằm trên (O) và OC vuông góc với a tại C. + Cách 2. Kẻ OH vuông góc a tại H và chứng minh OH = OC = R. + Cách 3. Vẽ tiếp tuyến a’ của (O) và chứng minh a và a’ trùng nhau. Dạng 2 . Tính độ dài. Phương pháp giải: Nối tâm với tiếp điểm để vận dụng định lý về tính chất của tiếp tuyến và sử dụng các công thức về hệ thức lượng trong tam giác vuông để tính độ dài các đoạn thẳng. Dạng 3 . Bài toán tổng hợp. C. TRẮC NGHIỆM RÈN PHẢN XẠ
Chuyên đề vị trí tương đối của đường thẳng và đường tròn
Tài liệu gồm 26 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề vị trí tương đối của đường thẳng và đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 4. A. KIẾN THỨC CẦN NHỚ + Vị trí tương đối. + Tính chất của tiếp tuyến. + Tính chất hai tiếp tuyến cắt nhau. + Đường tròn nội tiếp tam giác. + Đường tròn bàng tiếp tam giác. B. CÁC DẠNG BÀI TẬP TỰ LUẬN MINH HỌA Dạng 1: Nhận biết vị trí tương đối của đường thẳng và đường tròn. Dạng 2: Bài tập vận dụng tính chất tiếp tuyến. Dạng 3: Chứng minh tiếp tuyến của đường tròn. Dạng 4: Nâng cao phát triển tư duy. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN
Chuyên đề đường kính và dây cung của đường tròn
Tài liệu gồm 29 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề đường kính và dây cung của đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 2 và bài số 3. A. TÓM TẮT LÝ THUYẾT Đường kính và dây của đường tròn: Trong các dây của đường tròn, dây lớn nhất là đường kính. Quan hệ vuông góc giữa đường kính và dây: + Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy. + Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy. Liên hệ khoảng cách từ tâm đến dây: Trong một đường tròn: + Hai dây bằng nhau thì cách đều tâm. + Hai dây cách đều tâm thì bằng nhau. Trong hai dây của một đường tròn: + Dây nào lớn hơn thì dây đó gần tâm hơn. + Dây nào gần tâm hơn thì dây đó lớn hơn. B. CÁC DẠNG BÀI TỰ LUẬN MINH HỌA Dạng 1: Các bài toán liên quan đến tính toán trong đường tròn. Dạng 2: Chứng minh hai đoạn thẳng không bằng nhau. Dạng 3: Chứng minh hai đoạn thẳng bằng nhau. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN
Chuyên đề sự xác định đường tròn tính chất đối xứng của đường tròn
Tài liệu gồm 32 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề sự xác định đường tròn – tính chất đối xứng của đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 1. A. KIẾN THỨC CẦN NHỚ + Đường tròn. + Vị trí tương đối. + Cách xác định đường tròn. + Tính chất đối xứng. + Độ dài đường tròn và diện tích hình tròn. + Đường kính và dây của đường tròn. + Liên hệ khoảng cách từ tâm đến dây. B. CÁC DẠNG BÀI CƠ BẢN Dạng 1: Tính độ dài đường tròn và diện tích hình tròn. Dạng 2: Chứng minh các điểm cùng thuộc một đường tròn. Dạng 3: Đường kính và dây của đường tròn. Liên hệ khoảng cách từ tâm đến dây. C. CÁC BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY + Chứng minh nhiều điểm cùng thuộc một đường tròn. + Chứng minh một điểm thuộc một đường tròn cố định. + Dựng đường tròn. + Các dạng toán khác. D. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ