Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương pháp tọa độ trong không gian - Nguyễn Chín Em

Tài liệu gồm 971 trang được biên soạn bởi tác giả Nguyễn Chín Em trình bày kiến thức trọng tâm, các dạng toán và bài tập trắc nghiệm các chủ đề: hệ tọa độ Oxyz trong không gian, phương trình mặt phẳng, phương trình đường thẳng, phương trình mặt cầu; giúp học sinh tự học chương trình Hình học 12 chương 3: phương pháp tọa độ trong không gian Oxyz và ôn thi THPT Quốc gia môn Toán. Bài tập trắc nghiệm Oxyz trong tài liệu được phân loại theo các mức độ nhận thức: nhận biết, thông hiểu, vận dụng thấp và vận dụng cao; có đáp án và lời giải chi tiết. Khái quát nội dung tài liệu chuyên đề phương pháp tọa độ trong không gian – Nguyễn Chín Em: BÀI 1 . HỆ TỌA ĐỘ TRONG KHÔNG GIAN A KIẾN THỨC TRỌNG TÂM 1 Hệ tọa độ trong không gian. 2 Tọa độ một điểm. 3 Tọa độ của một véc-tơ. 4 Biểu thức toạ độ của các phép toán véc-tơ. 5 Biểu thức toạ độ của tích vô hướng và một số ứng dụng. 6 Tích có hướng của hai véc-tơ và ứng dụng. 7 Các bất đẳng thức vectơ. 8 Phương trình mặt cầu. B CÁC DẠNG TOÁN 1 Tìm tọa độ của vectơ và của điểm. 2 Chứng minh ba vectơ đồng phẳng hoặc không đồng phẳng. 3 Tích vô hướng và các ứng dụng. 4 Chứng minh các tính chất hình học. 5 Chứng minh các bất đẳng thức. 6 Mặt cầu. C BÀI TẬP RÈN LUYỆN D CÂU HỎI TRẮC NGHIỆM BÀI 2 . PHƯƠNG TRÌNH MẶT PHẲNG A KIẾN THỨC TRỌNG TÂM 1 Véc-tơ pháp tuyến. 2 Phương trình tổng quát của mặt phẳng. + Điều kiện để hai mặt phẳng song song, vuông góc. + Khoảng cách từ một điểm đến một mặt phẳng. + Góc giữa hai mặt phẳng. B CÁC DẠNG TOÁN 1 Viết phương trình mặt phẳng trung trực của đoạn thẳng AB cho trước. 2 Viết phương trình mặt phẳng đi qua một điểm và có cặp véc-tơ chỉ phương cho trước. 3 Viết phương trình mặt phẳng (P) đi qua M và vuông góc với đường thẳng d đi qua hai điểm A và B. 4 Viết phương trình mặt phẳng (P) đi qua A, B và vuông góc với mặt phẳng (Q). 5 Viết phương trình mặt phẳng (P) đi qua điểm M và chứa đường thẳng ∆. 6 Viết phương trình mặt phẳng (P) chứa hai đường thẳng song song ∆1 và ∆2. 7 Viết phương trình mặt phẳng (P) chứa hai đường thẳng cắt nhau ∆1 và ∆2. 8 Viết phương trình mặt phẳng (P) chứa đường thẳng ∆1 và song song với đường thẳng ∆2 với ∆1 và ∆2 chéo nhau. 9 Viết phương trình mặt phẳng (P) đi qua M, đồng thời vuông góc với hai mặt phẳng (α) và (β). 10 Viết phương trình mặt phẳng (P) đi qua điểm M và giao tuyến của hai mặt phẳng (α), (β). 11 Viết phương trình mặt phẳng (P) tạo với mặt phẳng (Q) cho trước một góc α. 12 Viết phương trình mặt phẳng (P) liên quan đến khoảng cách. C CÂU HỎI TRẮC NGHIỆM [ads] BÀI 3 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG A KIẾN THỨC TRỌNG TÂM 1 Phương trình tham số của đường thẳng. 2 Điều kiện để hai đường thẳng song song, trùng nhau, cắt nhau hoặc chéo nhau. 3 Điều kiện để một đường thẳng song song, cắt hoặc vuông góc với một mặt phẳng. 4 Khoảng cách. + Khoảng cách từ một điểm đến một đường thẳng. + Khoảng cách giữa hai đường thẳng chéo nhau. B CÁC DẠNG TOÁN 1 Đường thẳng đi qua một điểm và véc-tơ chỉ phương cho trước. 2 Viết phương trình đường thẳng giao tuyến của hai mặt phẳng. 3 Viết phương trình đường thẳng đi qua điểm M và vuông góc với hai đường thẳng cho trước. 4 Viết phương trình đường thẳng đi qua điểm M, cắt và vuông góc với một đường thẳng cho trước. 5 Viết phương trình đường thẳng đi qua điểm M, vuông góc với (d1) và cắt (d2). 6 Viết phương trình đường thẳng đi qua điểm M cắt cả hai đường thẳng (d1) và (d2). 7 Viết phương trình đường thẳng (d) nằm trong mặt phẳng (P) cắt cả hai đường thẳng (d1), (d2). 8 Viết phương trình đường thẳng (d) song song với (∆) cắt cả hai đường thẳng (a) và (b). 9 Viết phương trình đường thẳng vuông góc chung của hai đường thẳng chéo nhau (a) và (b). 10 Viết phương trình đường thẳng (d) là hình chiếu vuông góc của (a) lên mặt phẳng (P). 11 Viết phương trình đường thẳng (d) đối xứng với (a) qua mặt phẳng (P). 12 Tìm hình chiếu vuông góc của một điểm trên một đường thẳng. 13 Tìm hình chiếu vuông góc của một điểm trên một mặt phẳng. 14 Vị trí tương đối giữa hai mặt cầu. 15 Xét vị trí tương đối giữa hai mặt phẳng. 16 Xét vị trí tương đối giữa mặt phẳng và mặt cầu. C DẠNG TOÁN TỔNG HỢP D CÂU HỎI TRẮC NGHIỆM BÀI 4 . MẶT CẦU A KIẾN THỨC TRỌNG TÂM 1 Phương trình mặt cầu. B CÁC DẠNG TOÁN 1 Viết phương trình mặt cầu. 2 Dạng toán tổng hợp liên quan đến phương trình mặt cầu. C CÂU HỎI TRẮC NGHIỆM

Nguồn: toanmath.com

Đọc Sách

Phương pháp tọa độ trong không gian trong các đề thi thử THPTQG môn Toán
Tài liệu gồm 1219 trang được sưu tầm và biên soạn bởi thầy giáo Th.S Nguyễn Chín Em, tuyển tập các câu hỏi và bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian có đáp án và lời giải chi tiết trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây; giúp các em học sinh khối 12 học tốt chương trình Hình học 12 chương 3 (phương pháp tọa độ trong không gian) và ôn thi THPT Quốc gia môn Toán. Trích dẫn tài liệu phương pháp tọa độ trong không gian trong các đề thi thử THPTQG môn Toán: + Trong không gian với hệ trục Oxyz, cho mặt cầu (S): (x + 2)2 + (y − 4)2 + (z − 1)2 = 99 và điểm M(1; 7; −8). Qua điểm M kẻ các tia Ma, Mb, Mc đôi một vuông góc nhau và cắt mặt cầu tại điểm thứ hai tương ứng là A, B, C. Biết rằng mặt phẳng (ABC) luôn đi qua một điểm cố định K(xk; yk; zk). Tính giá trị P = xk + 2yk − zk. + Trong không gian Oxyz, cho mặt cầu (S) : (x − 2)2 + (y − 4)2 + (z − 6)2 = 24 và điểm A(−2; 0; −2). Từ A kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn (ω). từ điểm M di động nằm ngoài (S) và nằm trong mặt phẳng chứa (ω), kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn (ω0). Biết rằng khi (ω) và (ω0) có cùng bán kính thì M luôn thuộc một đường tròn cố định. Tính bán kính r của đường tròn đó. [ads] + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3; 1; 2) và B(5; 7; 0). Có tất cả bao nhiêu giá trị thực của tham số m để phương trình x2 + y2 + z2 − 4x + 2my − 2(m + 1)z + m2 + 2m + 8 = 0 là phương trình của một mặt cầu (S) sao cho qua hai điểm A, B có duy nhất một mặt phẳng cắt mặt cầu (S) đó theo giao tuyến là một đường tròn có bán kính bằng 1. + Trong không gian Oxyz, cho mặt phẳng (α) đi qua điểm M(1; 2; 1) và cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho độ dài OA, OB, OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2. Tính khoảng cách từ gốc tọa độ O đến mặt phẳng (α). + Trong không gian Oxyz, cho hai mặt phẳng (P): x + 2y − 2z + 2018 = 0, (Q): x + my + (m − 1)z + 2017 = 0 (m là tham số thực). Khi hai mặt phẳng (P) và (Q) tạo với nhau một góc nhỏ nhất thì điểm M nào dưới đây nằm trong (Q)?
744 câu trắc nghiệm Oxyz có đáp án - Trần Quốc Nghĩa
Tài liệu gồm 96 trang do thầy Trần Quốc Nghĩa sưu tầm và biên tập tuyển chọn 744 bài tập trắc nghiệm phương pháp tọa độ trong không gian Oxyz có đáp án, các bài tập được đánh số ID, được phân loại theo từng dạng bài và sắp xếp theo thứ tự độ khó tăng dần dựa trên 04 mức độ nhận thức: nhận biết, thông hiểu, vận dụng bậc thấp và vận dụng bậc cao … điều này giúp tài liệu phù hợp với đại đa số các đối tượng học sinh khác nhau. Các bài toán trắc nghiệm Oxyz được phân loại thành 06 vấn đề dựa vào các đơn vị bài học trong SGK Hình học 12 chương 3 như sau: 1. Vấn đề 1. Tọa độ điểm. Tọa độ véctơ (100 bài toán). 2. Vấn đề 2. Phương trình mặt phẳng (140 bài toán). 3. Vấn đề 3. Phương trình đường thẳng (140 bài toán). 4. Vấn đề 4. Vị trí tương đối. Khoảng cách. Góc (140 bài toán). 5. Vấn đề 5. Phương trình mặt cầu (140 bài toán). 6. Vấn đề 6. Trích đề bộ giáo dục (104 bài toán). [ads] Trích dẫn tài liệu 744 câu trắc nghiệm Oxyz có đáp án – Trần Quốc Nghĩa: + Trong không gian với hệ tọa độ Oxy, cho hình hộp chữ nhật ABCD.A’B’C’D’ có A trùng với gốc tọa độ O, các đỉnh B(m;0;0), D(0;m;0), A'(0;0;n) với m, n > 0 và m + n = 4. Gọi M là trung điểm của cạnh CC’. Khi đó thể tích tứ diện BDA’M đạt giá trị lớn nhất bằng? + Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) có phương trình 3x + 2y – 3z + 1 = 0. Phát biểu nào sau đây là sai? A. Phương trình của mặt phẳng (Q) song song với mặt phẳng (P) là 3x + 2y – 3z + 2 = 0. B. Phương trình của mặt phẳng (Q) song song với mặt phẳng (P) là 6x + 4y – 6z – 1 = 0. C. Phương trình mặt phẳng (Q) song song với mặt phẳng (P) là -3x – 2y + 3z – 5 = 0. D. Phương trình mặt phẳng (Q) song song với mặt phẳng (P) là -3x – 2y + 3z – 1 = 0. + Trong không gian với hệ trục toạ độ Oxyz, cho các mặt phẳng (P): x – y + 2z + 1 = 0 và (Q): 2x + y + z – 1 = 0. Gọi (S) là mặt cầu có tâm thuộc trục hoành đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính r. Xác định r sao cho chỉ đúng một mặt cầu (S) thoả yêu cầu.
Trắc nghiệm phương pháp tọa độ trong không gian Oxyz trong các đề thi thử Toán 2018
Tài liệu gồm 442 trang tổng hợp câu hỏi và bài tập trắc nghiệm phương pháp tọa độ trong không gian Oxyz có lời giải chi tiết trong các đề thi thử Toán 2018. Trích dẫn tài liệu trắc nghiệm phương pháp tọa độ trong không gian Oxyz trong các đề thi thử Toán 2018 : + (THPT Đức Thọ – Hà Tĩnh – lần 1 năm 2017 – 2018) Trong không gian với hệ toạ độ Oxyz, cho phương trình mặt phẳng (P): 2x – 3y + 4z + 5 = 0. Vectơ nào sau đây là một véctơ pháp tuyến của mặt phẳng (P). [ads] + (THPT Lê Quý Đôn – Hà Nội năm 2017 – 2018) Trong không gian với hệ trục tọa độ Oxyz, cho điểm M (1;1;1). Mặt phẳng (P) đi qua M và cắt chiều dương của các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C thỏa mãn OA = 2OB. Tính giá trị nhỏ nhất của thể tích khối tứ diện OABC. + (THPT Kinh Môn – Hải Dương lần 1 năm 2017 – 2018) Trong không gian Oxyz cho các mặt phẳng (P): x – y + 2z + 1 = 0, (Q): 2x + y + z – 1 = 0. Gọi (S) là mặt cầu có tâm thuộc trục hoành, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ có đúng một mặt cầu (S) thỏa yêu cầu.
Tổng hợp câu hỏi trắc nghiệm hay chương tọa độ không gian - Nguyễn Quang Hưng, Nguyễn Thành Tiến
Tài liệu gồm 32 trang tổng hợp câu hỏi trắc nghiệm hay và khó chương tọa độ không gian, các bài tập được trích trong đây chủ yếu là những bài được lấy trong các đề thi thử, bài giải được làm dưới cách chi tiết. Trích dẫn tài liệu : + Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 1; 0), B (0; 1; 1), C (1; 0; 1). Tìm hợp tất cả các điểm M trên mặt phẳng Oxz sao cho vtMA.vtMB + vtMC^2 = 2. A. Một đường thẳng B. Một đường tròn C. Một đường elip D. Không xác định được [ads] + Trong không gian với hệ tọa độ xyz, cho điểm A(1;2; -3) và cắt mặt phẳng (P): 2x + 2y – z + 9 = 0. Đường thẳng đi qua A và có véctơ chỉ phương u (3;4; -4) cắt (P) tại B. Điểm M thay đổi trong (P) sao cho M luôn nhìn đoạn AB dưới một góc 90 độ. Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau? A. J (-3; 2; 7)   B. H(-2; -1;3) C. K (3; 0; 15)   D. I (-1; -2; 3) + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x^2 + (y – 4)^2 + z^2 = 5. Tìm tọa độ điểm A thuộc tia Oy. Biết rằng ba mặt phẳng phân biệt qua A và đôi một vuông góc cắt mặt cầu theo thiết diện là ba hình tròn có tổng diện tích là 11π.