Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 2) - Nguyễn Xuân Chung

Tài liệu gồm 99 trang, được biên soạn bởi thầy giáo Nguyễn Xuân Chung, tuyển chọn và hướng dẫn phương pháp giải các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 2), giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. PHẦN 2 : CÁC BÀI TOÁN TẬP HỢP ĐIỂM; GTLN – GTNN. Trong phần 2 này chúng ta nghiên cứu các bài toán có nội dung về quỹ tích và giá trị lớn nhất, giá trị nhỏ nhất. Thông thường: Các bài toán tập hợp điểm cũng chính là các bài toán về min – max bởi vì khi tập hợp điểm thỏa mãn điều kiện nhất định thì sẽ đạt min – max. Tuy nhiên: Bài toán tập hợp điểm thiên về vị trí tương đối và tính toán, còn bài toán về min – max thiên về khảo sát hàm số và bất đẳng thức. Từ đó chúng ta cũng thấy được phương pháp giải có đặc trưng riêng. + Bài toán tập hợp điểm: Thường sử dụng phương pháp véc tơ, các định lý trong tam giác, hình bình hành, sự đối xứng, song song, vuông góc. + Bài toán min – max: Thường sử dụng phương pháp khử dần ẩn (Thêm biến, đổi biến, dồn biến), khảo sát cực trị, bất đẳng thức B.C.S, Mincopxki. Như vậy trong phần này các bài toán có mức độ Vận dụng – Vận dụng cao. Để giải nhanh thì chúng ta không chỉ nắm vững kiến thức mà còn sử dụng một số công thức tính nhanh, kỹ năng sử dụng CASIO. Nếu chỉ làm tự luận thì cũng có kết quả nhưng thi trắc nghiệm thì thời gian không nhiều!. Các em cần tính tổng thời gian của quy trình giải một bài toán khó như sau: + Đọc hiểu đề và yêu cầu của bài toán: Đọc để hiểu nội dung của bài toán là gì? + Tái hiện kiến thức: Trong bài toán chúng ta cần thiết những kiến thức nào? + Xác định các yếu tố cần giải: Chẳng hạn mặt cầu thì cần biết tâm, bán kính. + Biến đổi, tính toán: Đây là quy trình cuối cùng dẫn đến kết quả và trả lời, có nhiều khi phải vẽ hình minh họa thì càng mất nhiều thời gian. Trong phần này, các bài toán có chọn lọc và được biên soạn theo chủ đề: Điểm – mặt phẳng, Điểm – Mặt cầu, Điểm – Đường thẳng, và tổ hợp của các yếu tố trên. Trong phần 1, tôi đã đưa ra một số kiến thức bổ xung và công thức tính nhanh, nên phần này tôi không nêu ra. Tuy nhiên, trong phần này cũng có kiến thức bổ xung hữu ích để giúp chúng ta giải nhanh, từ đó mới tiết kiệm được thời gian toàn bài thi. Đặc biệt trong phần này ta nghiên cứu bài toán mà tạm gọi là “Định luật phản xạ ánh sáng đối với gương phẳng”. I. BỔ XUNG ‐ BÀI TOÁN VỀ TÂM TỈ CỰ. II. BÀI TOÁN VỀ TỔ HỢP VÉC TƠ. III. BÀI TOÁN VỀ QUỸ TÍCH – VỊ TRÍ TƯƠNG ĐỐI. IV. BÀI TOÁN VỀ TỔNG – HIỆU KHOẢNG CÁCH. V. BÀI TOÁN TỔNG HỢP CUỐI PHẦN 2. VI. PHỤ LỤC.

Nguồn: toanmath.com

Đọc Sách

Tổng ôn tập TN THPT 2020 môn Toán Phương trình mặt phẳng
Tài liệu gồm 35 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề phương trình mặt phẳng; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Phương trình mặt phẳng: Vấn đề 1. Xác định yếu tố cơ bản của mặt phẳng. Vấn đề 2. Khoảng cách từ điểm đến mặt phẳng, từ mặt phẳng đến mặt phẳng. Vấn đề 3. Góc của hai mặt phẳng. Vấn đề 4. Viết phương trình mặt phẳng.
Tổng ôn tập TN THPT 2020 môn Toán Hệ trục tọa độ trong không gian
Tài liệu gồm 31 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề hệ trục tọa độ trong không gian; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Hệ trục tọa độ trong không gian: Vấn đề 1. Hệ trục tọa độ trong không gian. Vấn đề 2. Phương trình mặt cầu. + Bài toán 1. Xác định tâm và bán kính. + Bài toán 2. Viết phương trình mặt cầu.
Bài toán phương trình mặt cầu - Diệp Tuân
Tài liệu gồm 81 trang, được biên soạn bởi thầy Diệp Tuân, phân dạng và hướng dẫn giải các dạng toán liên quan đến phương trình mặt cầu trong chương trình Hình học 12 chương 3: phương pháp tọa độ trong không gian. Khái quát nội dung tài liệu bài toán phương trình mặt cầu – Diệp Tuân: Dạng 1 . Xác định tâm và bán kính mặt cầu cho trước. Dạng 2 . Viết phương trình mặt cầu thỏa mãn điều kiện cho trước. + Bài toán 1. Phương trình mặt cầu tâm I và đi qua điểm A. + Bài toán 2. Phương trình mặt cầu đường kính AB. + Bài toán 3. Mặt cầu tâm I(a;b;c) tiếp xúc mặt phẳng (P): Ax + By + Cz + D = 0. + Bài toán 4. Mặt cầu ngoại tiếp tứ diện ABCD (đi qua bốn điểm A, B, C, D). + Bài toán 5. Mặt cầu đi qua A, B, C và tâm I thuộc mặt phẳng (P): Ax + By + Cz + D = 0. + Bài toán 6. Mặt cầu (S) đi qua hai điểm A, B và tâm thuộc đường thẳng d. + Bài toán 7. Mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A, B phân biệt. + Bài toán 8. Mặt cầu (S) có tâm I và tiếp xúc với mặt cầu (T) cho trước. + Bài toán 9. Mặt cầu (S’) đối xứng với mặt cầu (S) qua mặt phẳng (P). + Bài toán 10. Mặt cầu (S’) đối xứng mặt cầu (S) qua đường thẳng d. + Bài toán 11. Tìm tiếp điểm H là hình chiếu của tâm I trên mặt phẳng (P). + Bài toán 12. Tìm bán kính r và tâm H đường tròn giao tuyến của mặt phẳng và mặt cầu. + Bài toán 13. Tập hợp điểm và bài toán tiếp tuyến.
Bài toán phương trình đường thẳng - Diệp Tuân
Tài liệu gồm 132 trang, được biên soạn bởi thầy Diệp Tuân, phân dạng và hướng dẫn giải các dạng toán liên quan đến phương trình đường thẳng trong chương trình Hình học 12 chương 3: phương pháp tọa độ trong không gian. Khái quát nội dung tài liệu bài toán phương trình đường thẳng – Diệp Tuân: Dạng 1 . Viết phương trình đường thẳng. 1.Phương pháp chung. 2. Bài tập minh họa. 3. Một số kỹ thuật lập phương trình đường thẳng đặc biệt. + Kỹ thuật điểm M thuộc đường thẳng d. + Kỹ thuật lập hai mặt phẳng cắt nhau theo giao tuyến là đường thẳng d. Dạng 2 . Hình chiếu của điểm, của đường thẳng lên đường thẳng, mặt phẳng.  + Bài toán 1. Tìm hình chiếu của điểm A(xA;yA;zA) xuống đường thẳng d: x = x0 + at; y = y0 + bt; z = z0 + ct, suy ra điểm đối xứng A’ của A qua d. + Bài toán 2. Tìm hình chiếu của đường thẳng d: x = x0 + at; y = y0 + bt; z = z0 + ct xuống mặt phẳng (P): Ax + By + Cz + D = 0. Dạng 3 . Viết phương tình đường phân giác trong và ngoài của tam giác, của hai đường thẳng. + Bài toán 1. Viết phương tình đường phân giác trong và ngoài của tam giác ABC. + Bài toán 2. Viết phương tình đường phân giác góc nhọn và góc tù của hai đường thẳng d1 và d2 cắt nhau tại điểm A. Dạng 4 . Một số bài toán liên quan đến góc, khoảng cách và tương giao. + Vị trí tương đối của đường thẳng với mặt phẳng. + Giao điểm giữa đường thẳng và mặt phẳng. + Góc giữa hai đường thẳng. + Góc giữa đường thẳng với mặt phẳng. + Khoảng cách từ điểm đến đường thẳng. + Khoảng cách của hai đường thẳng chéo nhau. + Khoảng cách giữa đường thẳng và mặt phẳng song song.