Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 12 môn Toán năm 2022 2023 lần 1 trường THPT Đông Sơn 1 Thanh Hóa

Nội dung Đề HSG lớp 12 môn Toán năm 2022 2023 lần 1 trường THPT Đông Sơn 1 Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng học sinh giỏi môn Toán lớp 12 năm học 2022 – 2023 lần 1 trường THPT Đông Sơn 1, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2022. Trích dẫn Đề HSG Toán lớp 12 năm 2022 – 2023 lần 1 trường THPT Đông Sơn 1 – Thanh Hóa : + Trong một lần dạo chơi, An vô tình lạc vào một mê cung là một đa giác lồi có 33 cạnh. Để thoát khỏi mê cung thì An phải đi đúng 2 lần với cùng quy luật sau: “Với L là tập hợp các tam giác tạo từ ba đỉnh của đa giác, từ hai tam giác bất kì trong L, An phải đi theo một tam giác có đúng một cạnh là cạnh của đa giác và một tam giác không có cạnh nào là cạnh của đa giác (không phân biệt thứ tự đi)”. Giả sử tất cả các lần đi của An đều đúng thì xác suất thoát khỏi mê cung của An xấp xỉ là bao nhiêu? + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AD a 2. Cạnh bên SA vuông góc với mặt đáy và SA a 2. Gọi M, N lần lượt là các điểm thỏa mãn hệ thức MS MD 2 và AN AB 2. Biết góc tạo bởi đường thẳng SN với mặt phẳng (SCD) bằng 30°. Khoảng cách giữa hai đường thẳng SN và CM bằng? + Cho khối hộp chữ nhật ABCD A B C D. Khoảng cách giữa 2 đường thẳng AB và BC′ bằng 2 5 5 a khoảng cách giữa 2 đường thẳng BC và AB′ bằng 2 5 5 a. Khoảng cách giữa 2 đường thẳng AC và BD′ bằng 33a. Thể tích khối hộp chữ nhật đã cho bằng? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 12 THPT cấp tỉnh năm 2019 - 2020 sở GDĐT Quảng Nam
Thứ Tư ngày 10 tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kỳ thi tuyển chọn học sinh giỏi môn Toán lớp 12 hệ THPT cấp tỉnh năm học 2019 – 2020. Đề thi học sinh giỏi Toán 12 THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Quảng Nam được biên soạn theo dạng đề trắc nghiệm, đề gồm 06 trang với 40 câu hỏi và bài toán, thời gian làm bài thi là 90 phút (không kể thời gian giám thị coi thi phát đề), đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Quảng Nam : + Cắt tấm bìa hình tròn có bán kính bằng 1 (độ dày không đáng kể) theo đường gấp khúc SAQCPBS như hình 1, sau đó gấp phần đa giác còn lại theo các đoạn AB, BC, CA sao cho các điểm S, P, Q trùng nhau để được hình chóp đều có đáy là tam giác ABC như hình 2. Giá trị lớn nhất của thể tích khối chóp SABC bằng? + Trong không gian Oxyz, cho hai điểm AB, theo thứ tự thay đổi trên các tia Ox, Oy sao cho OA.OB = 9. Điểm S thuộc mặt phẳng (Ozx) sao cho hai mặt phẳng (SAB) và (SOB) cùng tạo với mặt phẳng (Oxy) một góc 30 độ. Gọi (a;0;c) là tọa độ điểm S. Tính giá trị của biểu thức P = a^4 + c^4 trong trường hợp thể tích khối chóp S.OAB đạt giá trị lớn nhất. [ads] + Đồ thị (C) của hàm số y = ax^3 + bx^2 + cx + 3a và đồ thị (C’) của hàm số y = 3ax^2 + 2bx + c (a, b, c thuộc R và a > 0) có đúng hai điểm chung khác nhau A, B và điểm A có hoành độ bằng 1. Các tiếp tuyến của (C) và (C’) tại điểm A trùng nhau; diện tích hình phẳng giới hạn bởi (C) và (C’) bằng 1. Giá trị của a + b + c bằng?
Đề thi HSG Toán 12 năm học 2019 - 2020 sở GDĐT thành phố Hồ Chí Minh
Thứ Tư ngày 10 tháng 06 năm 2020, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn học sinh giỏi lớp 12 cấp thành phố môn thi Toán năm học 2019 – 2020. Đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thang điểm 20, thời gian làm bài thi là 90 phút. Trích dẫn đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh : + Cho tập hợp X = {x | x thuộc Z; -5 ≤ x ≤ 5; x khác 0}. Chọn ngẫu nhiên 4 số đôi một phân biệt a, b, c, d thuộc X. Tính xác suất để hàm số y = (ax + b)/(cx + d) (với ad khác bc) có đồ thị (C) mà cả (C) lẫn tiệm cận đứng của (C) đều cắt trục Ox theo chiều dương. [ads] + Cho hàm số f(x) = 1/2.x^2 – mx, tham số m khác 1, có đồ thị (C1), (C2). Biết rằng tồn tại đúng hai số x0 thuộc (2;3) sao cho nếu gọi d1, d2 là tiếp tuyến tại các điểm có hoành độ x0 thuộc (C1), (C2) và d1, d2 cắt nhau ở A, còn d1, d2 cắt trục Ox ở B, C thì AB = AC. Tìm tất cả các giá trị m. + Cho hàm số y = (x + 2)/(x – 1) có đồ thị (C). Gọi d là đường thẳng di động đi qua điểm I(1;1) và cắt (C) tại hai điểm M, N. Tính khoảng cách từ điểm A(2;-3) đến d khi tam giác AMN có diện tích nhỏ nhất.
Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 - 2020 sở GDĐT An Giang
Sáng thứ Bảy ngày 06 tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh An Giang tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT An Giang gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút (không kể thời gian phát đề), các dạng toán gồm: Cấp số cộng và cấp số nhân, Phương trình lượng giác, Bài toán đếm, Hình học không gian, Giải và biện luận bất phương trình. Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT An Giang : + Bốn số lập thành một cấp số cộng, lần lượt trừ mỗi số ấy cho 2, 6, 7, 2 ta nhận được một cấp số nhân. Tìm bốn số đó. [ads] + Một đa giác đều (H) có 20 cạnh. Xét các tam giác có ba đỉnh lấy từ các đỉnh của (H). a. Có bao nhiêu tam giác có đúng một cạnh là cạnh của (H). b. Có bao nhiêu tam giác không có cạnh nào là cạnh của (H). + Cho hàm số y = f(x) = x^2 + bx + 1 với b là tham số. Xét bất phương trình f(f(x) + x) < 0. a. Giải bất phương trình khi b = 2 và b = 3. b. Tìm b để bất phương trình có đúng một nghiệm nguyên.
Đề thi học sinh giỏi Toán 12 năm học 2019 - 2020 sở GDĐT Đà Nẵng
Ngày … tháng 06 năm 2020, sở Giáo dục và Đào tạo thành phố Đà Nẵng tổ chức kỳ thi chọn học sinh giỏi lớp 12 cấp thành phố môn Toán năm học 2019 – 2020. Đề thi học sinh giỏi Toán 12 năm học 2019 – 2020 sở GD&ĐT Đà Nẵng mã đề 102 gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, học sinh làm bài bằng cách chọn và tô kín một ô tròn trên phiếu trả lời trắc nghiệm tương ứng với phương án trả lời đúng của mỗi câu. Trích dẫn đề thi học sinh giỏi Toán 12 năm học 2019 – 2020 sở GD&ĐT Đà Nẵng : + Trong không gian Oxyz, cho mặt phẳng (P): ax + by + cz + 7 = 0 qua điểm A(2;0;1), vuông góc với mặt phẳng (Q): 3x – y + z + 1 = 0 và tạo với mặt phẳng (R): x – y + 2z – 1 = 0 một góc 60°. Tổng a + b + c bằng? [ads] + Cho hình chóp S.ABCD có đường cao SA = 4a. Biết đáy ABCD là hình thang vuông tại A và B với AB = BC = 3a, AD = a. Gọi M là trung điểm của cạnh AB và (alpha) là mặt phẳng qua M vuông góc với AB. Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (alpha) là đa giác có diện tích bằng? + Từ các chữ số 0; 1; 2; 3; 4; 5 có thể lập được bao nhiêu số tự nhiên abcdef có sáu chữ số đôi một khác nhau mà mỗi số đều thỏa mãn d + e + f – a – b – c = 1?