Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Ninh Bình

Nội dung Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Ninh Bình Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh Ninh Bình năm 2022-2023 Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh Ninh Bình năm 2022-2023 Xin chào quý thầy cô giáo và các em học sinh lớp 9! Đây là đề thi chọn học sinh giỏi môn Toán lớp 9 THCS cấp tỉnh Ninh Bình cho năm học 2022-2023 do Sở Giáo dục và Đào tạo tỉnh Ninh Bình tổ chức. Kỳ thi sẽ diễn ra vào ngày 14 tháng 02 năm 2023. Đề thi bao gồm các bài toán sau: Cho phương trình \( (m + 1)x^3 + (3m - 1)x^2 - x - 4m + 1 = 0 \) (với m là tham số). Hãy tìm giá trị của m để phương trình đã cho có 3 nghiệm phân biệt. Giả sử có 3 điểm phân biệt cố định A, B, C nằm trên cùng một đường thẳng. Gọi I là trung điểm của đoạn thẳng BC. Được biết đường tròn tâm O luôn đi qua B và C. Kẻ các tiếp tuyến AM, AN với đường tròn tâm O (M, N là các tiếp điểm). Chứng minh rằng tứ giác OMNI nội tiếp và \( AH \cdot OA = AN^2 \). Đề bài thứ ba liên quan đến việc điền các số vào bảng ô vuông kích thước 10x10 và xác định các tổng trên các hàng, cột và đường chéo của bảng. Hỏi tổng của các số trên bảng có thể nhận bao nhiêu giá trị và chứng minh rằng có hai tổng bằng nhau. Trong bài toán cuối cùng, ta cần điền các số nguyên dương vào các ô vuông sao cho hai số ở hai ô chung cạnh hoặc chung đỉnh là hai số nguyên tố cùng nhau. Chứng minh rằng trong bảng đã cho tồn tại một số được điền ít nhất 17 lần. Hy vọng rằng các em học sinh sẽ rèn luyện và tự tin tham gia kỳ thi học sinh giỏi Toán lớp 9 cấp tỉnh Ninh Bình này. Chúc quý thầy cô và các em đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG thành phố Toán 9 năm 2021 - 2022 phòng GDĐT Đà Lạt - Lâm Đồng
Đề thi HSG thành phố Toán 9 năm 2021 – 2022 phòng GD&ĐT Đà Lạt – Lâm Đồng gồm 02 trang với 10 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Ba ngày 14 tháng 12 năm 2021.
Đề thi HSG huyện Toán 9 năm 2021 - 2022 phòng GDĐT Yên Thành - Nghệ An
Ngày … tháng 12 năm 2021, phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 9 cấp huyện năm học 2021 – 2022. Đề thi HSG huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Yên Thành – Nghệ An gồm có 05 bài toán, thời gian làm bài 120 phút, đề thi gồm 01 trang.
Đề thi HSG Toán 9 cấp trường năm 2021 - 2022 trường THCS Hồng Bàng - Hải Phòng
Đề thi HSG Toán 9 cấp trường năm 2021 – 2022 trường THCS Hồng Bàng – Hải Phòng gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi nhằm thành lập đội tuyển học sinh giỏi môn Toán 9 cấp trường.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Đống Đa - Hà Nội
Thứ Bảy ngày 04 tháng 12 năm 2021, phòng Giáo dục và Đào tạo quận Đống Đa, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng học sinh giỏi môn Toán lớp 9 năm học 2021 – 2022. Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Đống Đa – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Đống Đa – Hà Nội : + Cho biểu thức P a) Rút gọn biểu thức P. b) Tính giá trị của P. + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Trên đoạn HC lấy điểm M sao cho HM = HA. Đường thẳng vuông góc với BC tại M cắt AC tại K. a) Chứng minh BKC đồng dạng với AMC và BK = AB. b) Gọi I là trung điểm BK. Tính số đo góc AHI. + Cho 81 điểm phân biệt nằm trong một hình vuông có cạnh bằng 1. Chứng minh rằng tồn tại 6 điểm trong các điểm đã cho nằm trong một đường tròn có bán kính bằng 1/5.