Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Ninh Bình

Nội dung Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Ninh Bình Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh Ninh Bình năm 2022-2023 Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh Ninh Bình năm 2022-2023 Xin chào quý thầy cô giáo và các em học sinh lớp 9! Đây là đề thi chọn học sinh giỏi môn Toán lớp 9 THCS cấp tỉnh Ninh Bình cho năm học 2022-2023 do Sở Giáo dục và Đào tạo tỉnh Ninh Bình tổ chức. Kỳ thi sẽ diễn ra vào ngày 14 tháng 02 năm 2023. Đề thi bao gồm các bài toán sau: Cho phương trình \( (m + 1)x^3 + (3m - 1)x^2 - x - 4m + 1 = 0 \) (với m là tham số). Hãy tìm giá trị của m để phương trình đã cho có 3 nghiệm phân biệt. Giả sử có 3 điểm phân biệt cố định A, B, C nằm trên cùng một đường thẳng. Gọi I là trung điểm của đoạn thẳng BC. Được biết đường tròn tâm O luôn đi qua B và C. Kẻ các tiếp tuyến AM, AN với đường tròn tâm O (M, N là các tiếp điểm). Chứng minh rằng tứ giác OMNI nội tiếp và \( AH \cdot OA = AN^2 \). Đề bài thứ ba liên quan đến việc điền các số vào bảng ô vuông kích thước 10x10 và xác định các tổng trên các hàng, cột và đường chéo của bảng. Hỏi tổng của các số trên bảng có thể nhận bao nhiêu giá trị và chứng minh rằng có hai tổng bằng nhau. Trong bài toán cuối cùng, ta cần điền các số nguyên dương vào các ô vuông sao cho hai số ở hai ô chung cạnh hoặc chung đỉnh là hai số nguyên tố cùng nhau. Chứng minh rằng trong bảng đã cho tồn tại một số được điền ít nhất 17 lần. Hy vọng rằng các em học sinh sẽ rèn luyện và tự tin tham gia kỳ thi học sinh giỏi Toán lớp 9 cấp tỉnh Ninh Bình này. Chúc quý thầy cô và các em đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho hai đường thẳng y = 6 + 2x và y = 3 – x. a. Tìm toạ độ giao điểm M của hai đường thẳng trên. b. Gọi giao điểm của hai đường thẳng trên với trục hoành theo thứ tự là A và B. Tính diện tích tam giác MAB. + Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B). a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn. b) Chứng minh: MA2 = MD.MB c) Vẽ CH vuông góc với AB (H AB). Chứng minh rằng MB đi qua trung điểm của CH. + Cho 4 số thực a b c d thỏa mãn điều kiện: ac 2.(b + d) Chứng minh rằng có ít nhất một trong các bất đẳng thức sau là sai: a 4b 2 c 4d.
Đề học sinh giỏi huyện Toán 9 năm 2012 - 2013 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho tam giác nhọn ABC BC a CA b AB c. Chứng minh rằng: 222 a b c bc cosA. + Cho nửa đường tròn (O) đường kính BC. Trên tia đối của tia CB lấy điểm A, qua A kẻ tiếp tuyến AF với đường tròn (O) ( F là tiếp điểm). Tia AF cắt tia tiếp tuyến Bx của nửa đường tròn (O) tại D (tia tiếp tuyến Bx nằm trong nửa mặt phẳng bờ BC chứa nửa đường tròn (O)). Gọi H là giao điểm của BF với DO; K là giao điểm thứ hai của DC với nửa đường tròn (O). a) Chứng minh rằng AO.AB = AF.AD. b) Chứng minh DHK DCO. c) Kẻ OM vuông góc với BC (M thuộc đoạn AD). Chứng minh rằng 1 BD DM DM AM. + Cho hai số thực dương x, y thay đổi thỏa mãn điều kiện 3 4 x y. Tìm giá trị nhỏ nhất của biểu thức 1 1 A x xy.