Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình bậc nhất hai ẩn

Nội dung Chuyên đề phương trình bậc nhất hai ẩn Bản PDF Đầu tiên, "Chuyên đề phương trình bậc nhất hai ẩn" là một tài liệu học tập quan trọng với 19 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu này tổng hợp kiến thức quan trọng và cung cấp hướng dẫn chi tiết về cách giải các dạng bài tập tự luận và trắc nghiệm trong chuyên đề phương trình bậc nhất hai ẩn.

Trước hết, tài liệu bao gồm các kiến thức cơ bản như phương trình bậc nhất hai ẩn và tập nghiệm của chúng. Sau đó, tài liệu tập trung vào các dạng bài tập minh họa, bao gồm các dạng như xác định nghiệm của phương trình bậc nhất hai ẩn, biện luận và vẽ đồ thị của hàm số bậc nhất, cũng như tìm nghiệm nguyên của phương trình.

Ngoài ra, tài liệu cũng cung cấp các bài tập trắc nghiệm rèn luyện và tự luyện để học sinh có thể ôn tập và kiểm tra kiến thức của mình. Tài liệu này hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9, đặc biệt trong chương 3 với bài số 1 về phương trình bậc nhất hai ẩn.

Tóm lại, "Chuyên đề phương trình bậc nhất hai ẩn" là một tài liệu hữu ích, cung cấp kiến thức chi tiết và hướng dẫn cụ thể giúp học sinh nắm vững và áp dụng phương trình bậc nhất hai ẩn trong bài tập và bài kiểm tra.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề căn bậc hai và căn bậc ba Diệp Tuân
Nội dung Chuyên đề căn bậc hai và căn bậc ba Diệp Tuân Bản PDF - Nội dung bài viết Bộ tài liệu Chuyên đề căn bậc hai và căn bậc ba của thầy Diệp Tuân Bộ tài liệu Chuyên đề căn bậc hai và căn bậc ba của thầy Diệp Tuân Bộ tài liệu này được biên soạn bởi thầy giáo Diệp Tuân và bao gồm 127 trang, nhằm giúp học sinh lớp 9 nắm vững kiến thức về căn bậc hai và căn bậc ba trong chương trình Toán lớp 9. Bộ tài liệu cung cấp tóm tắt lý thuyết, phân loại dạng bài và bài tập minh họa cho các chuyên đề sau: BÀI 1. CĂN BẬC HAI - Dạng 1: Tìm căn bậc hai của một số hoặc tìm số có căn bậc hai đã cho. - Dạng 2: So sánh hai số có liên quan đến căn bậc hai. - Dạng 3: Tìm giá trị của x theo điều kiện cho trước. BÀI 2. CĂN THỨC BẬC HAI VÀ HẰNG ĐẲNG THỨC - Xác định điều kiện để căn bậc hai có ý nghĩa. - Tính giá trị của biểu thức chứa căn bậc hai. - Giải phương trình, phân tích đa thức thành nhân tử. BÀI 3. LIÊN HỆ GIỮA PHÉP NHÂN VÀ PHÉP KHAI PHƯƠNG - Thực hiện các phép tính liên quan đến phép nhân và phép khai phương. - Phân tích đa thức thành nhân tử và giải phương trình. BÀI 4. LIÊN HỆ GIỮA PHÉP CHIA VÀ PHÉP KHAI PHƯƠNG - Thực hiện phép chia và phép khai phương trong các bài tập. - Giải phương trình và chứng minh bất đẳng thức. BÀI 6. BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI - Rút gọn biểu thức và so sánh phân số. BÀI 7. TRỤC CĂN THỨC Ở MẪU - Khử mẫu của biểu thức chứa căn và so sánh các số. BÀI 8. RÚT GỌN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI - Rút gọn biểu thức, chứng minh đẳng thức và tìm giá trị biểu thức tại điểm x. BÀI 9. CĂN BẬC BA - Thực hiện các phép tính liên quan đến căn bậc ba và giải phương trình. Bộ tài liệu này sẽ giúp học sinh lớp 9 hiểu rõ hơn về căn bậc hai và căn bậc ba thông qua lý thuyết, ví dụ minh họa và bài tập thực hành.
Phân dạng và bài tập lớp 9 môn Toán
Nội dung Phân dạng và bài tập lớp 9 môn Toán Bản PDF - Nội dung bài viết Tài liệu Toán lớp 9 - Phân dạng và bài tậpMục lục:Chương 1: Đại sốChương 2: Hàm số bậc nhấtChương 3: Hệ hai phương trình bậc nhất hai ẩn Tài liệu Toán lớp 9 - Phân dạng và bài tập Tài liệu này gồm tổng cộng 103 trang, được biên soạn bởi thầy giáo Võ Hoàng Nghĩa và cô giáo Nguyễn Thị Hồng Loan. Tài liệu tập trung vào việc phân dạng và tuyển chọn các bài tập Toán cho học sinh lớp 9. Mục lục: Chương 1: Đại số Bài 1: Căn bậc hai - Căn thức bậc hai - Tóm tắt lí thuyết và các dạng bài tập như tìm điều kiện để biểu thức có nghĩa, tính giá trị biểu thức, rút gọn biểu thức, giải phương trình. Bài 2: Liên hệ giữa phép khai phương và phép nhân, phép chia - Tóm tắt lí thuyết và bài tập tự luận về thực hiện phép tính, rút gọn biểu thức, giải phương trình, chứng minh bất đẳng thức. Bài 3: Biến đổi đơn giản biểu thức chứa căn thức bậc hai - Tóm tắt lí thuyết và bài tập tự luận về thực hiện phép tính, rút gọn biểu thức, giải phương trình, chứng minh đẳng thức. Bài 4: Rút gọn biểu thức chứa căn thức bậc hai - Tóm tắt lí thuyết và bài tập tự luận. Bài 5: Căn bậc ba - Tóm tắt lí thuyết và bài tập tự luận về thực hiện phép tính, chứng minh đẳng thức, so sánh hai số, giải phương trình. Bài 6: Ôn tập chương I Chương 2: Hàm số bậc nhất Bài 1: Khái niệm hàm số - Tóm tắt lí thuyết và bài tập tự luận. Bài 2: Hàm số bậc nhất - Tóm tắt lí thuyết và bài tập tự luận. Bài 3: Ôn tập chương II Chương 3: Hệ hai phương trình bậc nhất hai ẩn Bài 1: Phương trình bậc nhất hai ẩn - Tóm tắt lí thuyết và bài tập tự luận. Bài 2: Hệ hai phương trình bậc nhất hai ẩn - Tóm tắt lí thuyết và bài tập tự luận. Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn - Tóm tắt lí thuyết và bài tập tự luận. Bài 4: Giải toán bằng cách lập hệ phương trình bậc nhất hai ẩn - Tóm tắt lí thuyết và các dạng bài tập khác nhau. Bài 5: Ôn tập chương III
Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax2 (a khác 0)
Nội dung Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax2 (a khác 0) Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax^2 (a khác 0)A. Các kiến thức cần nhớB. Bài tập áp dụng Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax^2 (a khác 0) Trong tài liệu này, bạn sẽ được giới thiệu đến kiến thức cơ bản về hàm số và đồ thị hàm số y = ax^2 (a khác 0) trong chương trình môn Toán lớp 9. Tài liệu bao gồm 20 trang, bao gồm các kiến thức cần nhớ, các dạng toán và bài tập thực hành có đáp án và lời giải chi tiết. Để hiểu rõ hơn về chủ đề này, hãy cùng điểm qua một số điểm chính sau: A. Các kiến thức cần nhớ Tính chất của hàm số y = ax^2 (a khác 0): Nếu a > 0 thì hàm số đồng biến khi x > 0 và nghịch biến khi x < 0. Nếu a < 0 thì hàm số đồng biến khi x < 0 và nghịch biến khi x > 0. Nếu a > 0 thì y > 0 với mọi x ≠ 0; y = 0 khi x = 0. Nếu a < 0 thì y < 0 với mọi x ≠ 0; y = 0 khi x = 0. Đồ thị của hàm số y = ax^2 (a khác 0): Đồ thị của hàm số y = ax^2 (a khác 0) là một parabol với đỉnh tại gốc tọa độ O. Vị trí của đồ thị so với trục hoành phụ thuộc vào giá trị của a. B. Bài tập áp dụng Tài liệu cung cấp nhiều bài tập áp dụng để bạn thực hành và mở rộng kiến thức: Tính giá trị của hàm số tại một điểm cho trước. Xét tính đồng biến, nghịch biến của hàm số. Vẽ đồ thị hàm số y = ax^2 (a khác 0). Giải bài toán liên quan đến sự tương giao giữa đồ thị và đường thẳng. Ngoài ra, tài liệu còn kèm theo một bộ bài tập về nhà để bạn tự rèn luyện và nắm vững kiến thức. Hãy cẩn thận và kiên nhẫn khi làm bài tập, sẽ không có gì là khó khăn nếu bạn cố gắng. Chúc bạn học tốt!
Tài liệu lớp 9 môn Toán chủ đề công thức nghiệm của phương trình bậc hai
Nội dung Tài liệu lớp 9 môn Toán chủ đề công thức nghiệm của phương trình bậc hai Bản PDF Tài liệu lớp 9 môn Toán với chủ đề công thức nghiệm của phương trình bậc hai cung cấp kiến thức cần nhớ, các dạng toán và bài tập chi tiết để học sinh hiểu rõ về phương trình bậc hai.I. Kiến thức cần nhớ:1. Phương trình bậc hai một ẩn:- Phương trình bậc hai một ẩn là phương trình có dạng \(ax^2 + bx + c = 0\).- Để giải phương trình bậc hai một ẩn, ta cần tìm tập nghiệm của phương trình đó.2. Công thức nghiệm của phương trình bậc hai:- Xét phương trình bậc hai \(ax^2 + bx + c = 0\) và biệt thức \(\Delta = b^2 - 4ac\).- Nếu \(\Delta < 0\), phương trình vô nghiệm.- Nếu \(\Delta = 0\), phương trình có nghiệm kép.- Nếu \(\Delta > 0\), phương trình có hai nghiệm phân biệt.3. Công thức nghiệm thu gọn của phương trình bậc hai:- Xét phương trình bậc hai \(ax^2 + bx + c = 0\) với \(b = \frac{b}{2}\).- Trong trường hợp \(\Delta < 0\), phương trình vô nghiệm.- Trong trường hợp \(\Delta = 0\), phương trình có nghiệm kép: \(x = \frac{-b}{2a}\).- Trong trường hợp \(\Delta > 0\), phương trình có hai nghiệm phân biệt: \(x = \frac{-b \pm \sqrt{\Delta}}{2a}\).II. Bài tập và các dạng toán:- Tài liệu cung cấp các dạng toán như: giải phương trình bậc hai một ẩn, sử dụng công thức nghiệm, xác định số nghiệm của phương trình, chứng minh phương trình có nghiệm, vô nghiệm.- Học sinh có thể tự ôn tập và làm bài tập về nhà để nắm vững kiến thức.Tài liệu lớp 9 môn Toán với chủ đề công thức nghiệm của phương trình bậc hai là nguồn tư liệu hữu ích giúp học sinh hiểu rõ về phương trình bậc hai và rèn luyện kỹ năng giải các dạng toán liên quan.