Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các phương pháp xác định nguyên hàm - Lê Bá Bảo

Tài liệu gồm 41 trang hướng dẫn các phương pháp tìm nguyên hàm của hàm số với các ví dụ minh họa và bài tập trắc nghiệm tự luyện. I – Tổng quan lý thuyết 1. Nguyên hàm 2. Tính chất của nguyên hàm 3. Sự tồn tại của nguyên hàm 4. Bảng nguyên hàm của một số hàm số sơ cấp II – Phương pháp tính nguyên hàm [ads] III – Bài tập tự luận minh họa + Một số phép biến đổi cơ bản + Nguyên hàm các hàm số phân thức + Nguyên hàm từng phần + Đổi biến + Dùng vi phân IV – Bài tập trắc nghiệm minh họa V – Bài tập trắc nghiệm tự luyện

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm nguyên hàm của hàm hữu tỉ
Tài liệu gồm 22 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề nguyên hàm của hàm hữu tỉ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT I. Các công thức cần nhớ. II. Nguyên hàm dạng P x dx I Q x. + Dạng 1: P x dx I ax b. + Dạng 2: 2 mx n I dx ax bx c. + Dạng 3: P x dx I Q x với 3 2 Q x ax bx cx d. + Dạng 4: Tham khảo và nâng cao: 4 2 P x dx I x a trong đó bậc của P(x) nhỏ hơn 4. + Dạng 5: Tham khảo và nâng cao: Một số nguyên hàm hữu tỷ khi Q(x) là đa thức bậc 6. B. VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm nguyên hàm từng phần
Tài liệu gồm 23 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề nguyên hàm từng phần, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT TRỌNG TÂM Một số dạng nguyên hàm từng phần thường gặp: + Dạng 1: I P x mx n dx ln trong đó P x là đa thức. Theo quy tắc ta đặt ln u mx n dv P x dx. + Dạng 2: sin cos x I P x dx x trong đó P x là đa thức. Theo quy tắc ta đặt sin cos u Px x dv dx x. + Dạng 3: ax b I P x e dx trong đó P x là đa thức. Theo quy tắc ta đặt ax b u Px dv a dx. + Dạng 4: sin cos x x I e dx x. Theo quy tắc ta đặt sin cos x x u x dv e dx. B. VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm phương pháp đổi biến tìm nguyên hàm
Tài liệu gồm 22 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương pháp đổi biến tìm nguyên hàm, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. DẠNG 1. ĐỔI BIẾN SỐ HÀM SỐ VÔ TỈ (Đặt t = hàm theo biến x). + Mẫu 1: Đổi biến hàm số vô tỷ đơn giản. + Mẫu 2: Nguyên hàm dạng x f a dx. + Mẫu 3: Nguyên hàm dạng ln f x dx x. DẠNG 2. ĐỔI BIẾN SỐ HÀM VÔ TỈ (Đặt x = hàm theo biến t). + Mẫu 1: Nếu f x có chứa 2 2 a x ta đặt sin 2 2 x a tt. + Mẫu 2: Dạng 2 2 x a thì đổi biến số tan 2 2 xa t t π π. + Mẫu 3: Dạng 2 2 x a thì ta đặt sin a x t (hoặc cos a x t). + Mẫu 4: Dạng 2 2 dx x a thì ta đặt xa t tan. + Mẫu 5: Nếu f x có chứa a x a x thì đặt 2 2 cos 2 2 sin 2 cos 2 1 cos 2 cos 1 cos 2 sin dx d a t a tdt xa t ax t t ax t t. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm phương pháp vi phân tìm nguyên hàm
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương pháp vi phân tìm nguyên hàm, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. Vi phân của hàm số. II. Một số công thức vi phân quan trọng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.