Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải toán bằng cách lập phương trình - hệ phương trình

Tài liệu gồm 20 trang, hướng dẫn phương pháp giải toán bằng cách lập phương trình – hệ phương trình, giúp học sinh học tốt chương trình Toán 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. Khái quát nội dung tài liệu giải toán bằng cách lập phương trình – hệ phương trình: Để giải bài toán bằng cách lập phương trình, hệ phương trình ta thường thực hiện theo các bước sau: + Bước 1: Chọn ẩn số (nêu đơn vị của ẩn và đặt điều kiện nếu cần). + Bước 2: Tính các đại lượng trong bài toán theo giả thiết và ẩn số, từ đó lập phương trình hoặc hệ phương trình. + Bước 3: Giải phương trình hoặc hệ phương trình vừa lập. + Bước 4: Đối chiếu với điều kiện và trả lời. [ads] CÁC BÀI TOÁN CHUYỂN ĐỘNG + Quãng đường = Vận tốc . Thời gian. + Vận tốc tỷ lệ nghịch với thời gian và tỷ lệ thuận với quãng đường đi được. + Nếu hai xe đi ngược chiều nhau khi gặp nhau lần đầu: Thời gian hai xe đi được là như nhau. Tổng quãng đường 2 xe đi được bằng đúng quãng đường cần đi của 2 xe. + Nếu hai phương tiện chuyển động cùng chiều từ hai địa điểm khác nhau là A và B, xe từ A chuyển động nhanh hơn xe từ B thì khi xe từ A đuổi kịp xe từ B ta luôn có hiệu quãng đường đi được của xe từ A với quãng đường đi được của xe từ B bằng quãng đường AB. + Đối với Ca nô, tàu xuồng chuyển động trên dòng nước: Ta cần chú ý: Khi đi xuôi dòng: Vận tốc ca nô = Vận tốc riêng + Vận tốc dòng nước. Khi đi ngược dòng: Vận tốc ca nô = Vận tốc riêng – Vận tốc dòng nước. Vận tốc của dòng nước là vận tốc của một vật trôi tự nhiên theo dòng nước (vận tốc riêng của vật đó bằng 0). BÀI TOÁN LIÊN QUAN ĐẾN NĂNG SUẤT LAO ĐỘNG – CÔNG VIỆC Ta cần chú ý: Khi giải các bài toán liên quan đến năng suất thì liên hệ giữa ba đại lượng là: Khối lượng công việc = năng suất lao động × thời gian.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tính diện tích tam giác, diện tích tứ giác nhờ sử dụng các tỉ số lượng giác
Tài liệu gồm 14 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề tính diện tích tam giác, diện tích tứ giác nhờ sử dụng các tỉ số lượng giác, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1 bài số 4. A. KIẾN THỨC CẦN NHỚ Ta đã biết cách tính diện tích tam giác theo một công thức rất quen thuộc là S = 1/2ah, trong đó a là độ dài một cạnh của tam giác, h là chiều cao ứng với cạnh đó. Bây giờ ta vận dụng các tỉ số lượng giác, các hệ thức về cạnh và góc trong tam giác vuông để xây dựng thêm các công thức tính diện tích tam giác, tứ giác. B. BÀI TẬP MINH HỌA C. BÀI TẬP TỰ LUYỆN + Tính diện tích. + Chứng minh các hệ thức. + Tính số đo góc. + Tính độ dài. D. HƯỚNG DẪN GIẢI
Chuyên đề ứng dụng thực tế các tỉ số lượng giác của góc nhọn, thực hành ngoài trời
Tài liệu gồm 13 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề ứng dụng thực tế các tỉ số lượng giác của góc nhọn, thực hành ngoài trời, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1 bài số 5. A. KIẾN THỨC CẦN NHỚ Vận dụng linh hoạt các tỉ số lượng giác của góc nhọn và kiến thức thực tiễn vào xử lý bài tập liên quan. B. BÀI TẬP MINH HỌA CƠ BẢN NÂNG CAO I. Bài tập củng cố kiến thức bản chất toán. II. Bài tập vận dụng vào thực tế.
Chuyên đề một số hệ thức về cạnh và góc trong tam giác vuông
Tài liệu gồm 52 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề một số hệ thức về cạnh và góc trong tam giác vuông, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1 bài số 4. A. KIẾN THỨC CẦN NHỚ I. Định lí Trong một tam giác vuông, mỗi cạnh góc vuông bằng: + Cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề. + Cạnh góc vuông kia nhân với tang góc đối hoặc nhân với côtang góc kề. Trong hình bên thì: $b = a\sin B = a\cos C$; $c = a\sin C = a\cos B$; $b = c\tan B = c\cot C$; $c = b\tan C = b\cot B.$ II. Giải tam giác vuông Là tìm tất cả các cạnh và góc của tam giác vuông B khi biết hai yếu tố của nó (trong đó ít nhất có một yếu tố về độ dài). B. MỘT SỐ DẠNG BÀI CƠ BẢN VÀ NÂNG CAO C. BÀI TẬP TỰ LUYỆN D. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ
Chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông
Tài liệu gồm 30 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1. A. KIẾN THỨC CẦN NHỚ B. CÁC DẠNG BÀI TẬP CƠ BẢN VÀ NÂNG CAO Dạng 1 : Các bài toán tính toán. 1. Phương pháp giải. + Bước 1: Đặt độ dài cạnh, góc bằng ẩn. + Bước 2: Thông qua giả thiết và các hệ thức lượng lập phương trình chứa ẩn. + Bước 3: Giải phương trình, tìm ẩn số. Từ đó tính độ dài đoạn thẳng hoặc góc cần tìm. 2. Bài tập minh họa. Dạng 2 : Chứng minh đẳng thức, mệnh đề. 1. Phương pháp giải. Đưa mệnh đề về dạng đẳng thức, sử dụng hệ thức lượng và một số kiến thức đã học biến đổi các vế trong biểu thức, từ đó chứng minh các vế bằng nhau. 2. Bài tập minh họa. C. TRẮC NGHỆM RÈN LUYỆN PHẢN XẠ D. HƯỚNG DẪN GIẢI