Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2

Tài liệu gồm 213 trang được sưu tầm và biên soạn bởi thầy giáo Ths. Nguyễn Chín Em, phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2. Với mỗi câu hỏi và bài toán trong đề thi, tài liệu bổ sung thêm nhiều câu hỏi và bài toán tương tự, có đáp án và lời giải chi tiết. 50 dạng toán phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2: + Dạng toán 1. Hoán vị – Chỉnh hợp – Tổ hợp. + Dạng toán 2. Cấp số cộng. + Dạng toán 3. Phương trình Mũ – Logarits (phương trình mũ). + Dạng toán 4. Thể tích khối đa diện (Khối lập phương). + Dạng toán 5. Hàm số Mũ – Hàm số Logarits (hàm số Logarits). + Dạng toán 6. Nguyên hàm – Tích phân(Nguyên hàm). + Dạng toán 7. Thể tích khối đa diện (Khối chóp). + Dạng toán 8. Khối Nón – Trụ – Cầu (Công thức thể tích khối Nón). + Dạng toán 9. Khối Nón – Trụ – Cầu (Diện tích mặt cầu). + Dạng toán 10. Tính đơn điệu hàm số (Tìm khoảng đơn điệu khi biết bảng biến thiên). + Dạng toán 11. Logarits (Rút gọn biểu thức Logarits đơn giản). + Dạng toán 12. Khối Nón – Trụ – Cầu (Công thức diện tích xung quanh của trụ). + Dạng toán 13. Cực trị của hàm số (Tìm điểm cực trị khi biết bảng biến thiên). + Dạng toán 14. Khảo sát và vẽ đồ thị hàm số (Tìm hàm số khi biết đồ thị). + Dạng toán 15. Tiệm cận (Tìm tiệm cận ngang của hàm số). + Dạng toán 16. Bất phương trình Mũ – Logarits (Giải bất phương trình Logarit). + Dạng toán 17. Sự tương giao đồ thị (Đếm số nghiệm của phương trình khi biết đồ thị). + Dạng toán 18. Nguyên hàm – Tích phân (Tính tích phân dựa vào tính chất tích phân). + Dạng toán 19. Số phức (Tìm số phức liên hợp). + Dạng toán 20. Số phức (Tìm phần thực của tổng của hai số phức). + Dạng toán 21. Số phức (Tìm điểm biểu diễn của số phức). + Dạng toán 22. Hệ Oxyz (Tìm tọa độ hình chiếu của điểm lên mặt phẳng tọa độ). + Dạng toán 23. Hệ Oxyz (Tìm tọa độ tâm mặt cầu). + Dạng toán 24. Phương trình mặt phẳng (Tìm tọa đọ véc tơ pháp tuyến). + Dạng toán 25. Phương trình đường thẳng (Tìm tọa độ điểm thuộc đường thẳng đã cho). [ads] + Dạng toán 26. Quan hệ vuông góc trong không gian (Tìm góc giữa đường thẳng và mặt phẳng). + Dạng toán 27. Cực trị của hàm số (Tìm số điểm cực trị khi biết bảng biến thiên). + Dạng toán 28. GTLN và GTNN (Tìm GTLN – GTNN của hàm số trên đoạn). + Dạng toán 29. Logarits (Biểu diễn các tham số trong biểu thức Logarits đơn giản). + Dạng toán 30. Khảo sát và vẽ đồ thị hàm số (Tìm số giao điểm của đồ thị hàm số và trục hoành). + Dạng toán 31. Bất phương trình Mũ – Logarits (Giải Bphương trình Mũ). + Dạng toán 32. Mặt Nón – Trụ – Cầu (Tính diện tích xung quanh hình nón ). + Dạng toán 33. Nguyên hàm – Tích phân (Nhận dạng tích phân khi đổi biến). + Dạng toán 34. Ứng dụng tích phân (Tính diện tích hình phẳng). + Dạng toán 35. Số phức (Tìm phần ảo của tích hai số phức). + Dạng toán 36. Số phức (Phương trình bậc hai với hệ số thực). + Dạng toán 37. Phương trình đường thẳng trong Oxyz (Tổng hợp liên quan đường thẳng và mặt phẳng). + Dạng toán 38. Phương trình đường thẳng trong Oxyz (Lập phương trình đồ thị qua hai điểm). + Dạng toán 39. Tổ hợp – Xác suất (Tính xác suất biến cố). + Dạng toán 40. Khoảng cách (Khoảng cách giữa hai đường thẳng chéo nhau). + Dạng toán 41. Tính đơn điệu của hàm số (Tìm m để hàm số đồng biến trên R). + Dạng toán 42. Hàm số Mũ – Hàm số Logarits (Bài toán thực tế). + Dạng toán 43. Khảo sát và vẽ đồ thị hàm số (Nhận dạng các hệ số của hàm phân thức khi biết bảng biến thiên). + Dạng toán 44. Khối Nón – Trụ – Cầu (Bài toán thực tế tính thể tích của khối trụ). + Dạng toán 45. Nguyên hàm – Tích Phân (Tính tích phân hàm ẩn). + Dạng toán 46. Khảo sát và vẽ đồ thị hàm số (Tìm số nghiệm của phương trình liên quan đến sinx khi biết bảng biến thiên). + Dạng toán 47. Hàm số Mũ – Logarits (Tìm GTLN – GTNN của biểu thức hai ẩn phụ thuộc vào biểu thức mũ – logarits). + Dạng toán 48. GTLN – GTNN (Tìm GTLN – GTNN của hàm phụ thuộc tham số trên đoạn). + Dạng toán 49. Thể tích khối đa diện (Thể tích khối đa diện cắt ra từ một khối khác). + Dạng toán 50. Phương trình Mũ – Logarits (Tìm số ẩn hoặc mối liên hệ giữa các ẩn trong phương trình Logarits chứa hai ẩn).

Nguồn: toanmath.com

Đọc Sách

Bài tập củng cố phần 8 9 10 điểm trong đề thi THPT Quốc gia 2017 môn Toán - Lục Trí Tuyên
Tài liệu gồm 54 trang tuyển tập các bài toán trắc nghiệm ở mức độ vận dụng và vận dụng cao giúp củng cố phần 8 – 9 – 10 điểm trong đề thi THPT Quốc gia 2017 môn Toán. Các bài tập đều có đáp án (được gạch chân).
7 chủ đề chính môn Toán trong đề thi THPT Quốc gia 2017 - Lê Đôn Cường
Tài liệu gồm 26 trang tuyển tập các bài toán trắc nghiệm chọn lọc thuộc 7 chủ đề trong đề thi THPT Quốc gia môn Toán, bao gồm: + Chủ đề 1: Hàm số và các bài toán liên quan + Chủ đề 2: Lũy thừa – mũ & logarit + Chủ đề 3: Nguyên hàm – tích phân & ứng dụng + Chủ đề 4: Số phức + Chủ đề 5: Hình học không gian phần khối đa diện + Chủ đề 6: Hình học không gian khối tròn xoay + Chủ đề 7: Hình học không gian tọa độ Oxyz Các bài toán đều có đáp án.
Tuyển tập và giải chi tiết các bài toán thực tiễn trong đề thi thử - Trần Văn Tài
Tài liệu gồm 174 trang tuyển tập các bài toán ứng dụng thực tiễn chọn lọc trong các đề thi thử THPT Quốc gia năm 2017, có lời giải chi tiết. Các bài toán được phân dạng thành các chủ đề: + Chủ đề 1. Liên quan di chuyển – quãng đường đi + Chủ đề 2. Liên quan cắt – ghép các khối hình + Chủ đề 3. Lãi suất ngân hàng – trả góp + Chủ đề 4. Bài toán tăng trưởng + Chủ đề 5. Bài toán tối ưu chi phí sản xuất + Chủ đề 6. Bài toán thực tế min – max [ads] Trích dẫn tài liệu : + Một kho hàng được đặt tại ví trí A trên bến cảng cần được chuyển tới kho C trên một đảo, biết rằng khoảng cách ngắn nhất từ kho C đến bờ biển AB bằng độ dài CB = 60 km và khoảng cách giữa 2 điểm A, B là AB = 130km. Chi phí để vận chuyển toàn bộ kho hàng bằng đường bộ là 300.000 đồng/km, trong khi đó chi phí vận chuyển hàng bằng đường thủy là 500.000 đồng/km. Hỏi phải chọn điểm trung chuyển hàng D (giữa đường bộ và đường thủy) cách kho A một khoảng bằng bao nhiêu thì tổng chi phí vận chuyển hàng từ kho A đến kho C là ít nhất? + Một vùng đất hình chữ nhật ABCD có AB = 25km, BC = 20 km và M, N lần lượt là trung điểm của AD, BC. Một người cưỡi ngựa xuất phát từ A đi đến C bằng cách đi thẳng từ A đến một điểm X thuộc đoạn MN rồi lại đi thẳng từ X đến C. Vận tốc của ngựa khi đi trên phần ABNM là 15km/h, vận tốc của ngựa khi đi trên phần MNCD là 30km/h. Thời gian ít nhất để ngựa di chuyển từ A đến C là mấy giờ? + Trong Công viên Toán học có những mảnh đất mang hình dáng khác nhau. Mỗi mảnh được trồng một loài hoa và nó được tạo thành bởi một trong những đường cong đẹp trong toán học. Ở đó có một mảnh đất mang tên Bernoulli, nó được tạo thành từ đường Lemmiscate có phương trình trong hệ tọa độ Oxy là 16y^2 = x^2.(25 – x^2) như hình vẽ bên. Tính diện tích S của mảnh đất Bernoulli biết rằng mỗi đơn vị trong hệ tọa độ Oxy tương ứng với chiều dài 1 mét.
Tuyển chọn 152 bài toán vận dụng cao trong các đề thi thử - Nguyễn Văn Rin
Tài liệu gồm 26 trang tuyển chọn 152 bài toán mức độ vận dụng cao trong các đề thi thử THPT Quốc gia 2017 của các trường và sở GD – ĐT trên cả nước, các bài tập có đáp án. Trích dẫn tài liệu : + Một cửa hàng bán lẻ phần mềm soạn thảo công thức toán học MathType với giá là 10 USD. Với giá bán này, cửa hàng chỉ bán được khoảng 25 sản phẩm. Cửa hàng dự định sẽ giảm giá bán, ước tính cứ mỗi lần giảm giá bán đi 2 USD thì số sản phẩm bán được tăng thêm 40 sản phẩm. Xác định giá bán để cửa hàng thu được lợi nhuận lớn nhất, biết rằng giá mua về của một sản phẩm là 5USD. + Cho ba tia Ox, Oy, Oz đôi một vuông góc với nhau. Gọi C là điểm cố định trên Oz, đặt OC = 1; các điểm A, B thay đổi trên Ox, Oy sao cho OA + OB = OC. Tìm giá trị bé nhất của bán kính mặt cầu ngoại tiếp tứ diện OABC. [ads] + Người ta dựng một cái lều vải (H) có dạng hình “chóp lục giác cong đều” như hình vẽ bên. Đáy của (H) là một hình lục giác đều cạnh 3m. Chiều cao SO = 6m (SO vuông góc với mặt phẳng đáy). Các cạnh bên của (H) là các sợi dây c1, c2, c3, c4, c5, c6 nằm trên các đường parabol có trục đối xứng song song với SO. Giả sử giao tuyến (nếu có) của (H) với mặt phẳng (P) vuông góc với SO là một lục giác đều và khi (P) qua trung điểm của SO thì lục giác đều có cạnh bằng 1m. Tính thể tích phần không gian nằm bên trong cái lều (H) đó.