Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra HKI lớp 11 môn Toán năm 2019 2020 trường Nguyễn Gia Thiều Hà Nội

Nội dung Đề kiểm tra HKI lớp 11 môn Toán năm 2019 2020 trường Nguyễn Gia Thiều Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh khối lớp 11 đề kiểm tra HKI Toán lớp 11 năm học 2019 – 2020 trường THPT Nguyễn Gia Thiều – Hà Nội, kỳ thi nhằm kiểm tra toàn diện tất cả các kiến thức Đại số & Giải tích 11 và Hình học 11 mà học sinh đã học trong học kỳ vừa qua. Trích dẫn đề kiểm tra HKI Toán lớp 11 năm 2019 – 2020 trường Nguyễn Gia Thiều – Hà Nội : + Khẳng định nào dưới đây sai? A. Phép biến hình bảo toàn khoảng cách hai điểm bất kì là một phép đồng dạng. B. Phép vị tự tâm I, tỉ số k biến hai điểm M, N lần lượt thành hai điểm M’, N’ thì M’N’ = kMN. C. Phép quay tâm I, góc quay 540° là một phép đối xứng tâm I. D. Phép quay biến đường thẳng thành đường thẳng vuông góc với nó. [ads] + Một danh sách có 10 học sinh và 10 lớp học đều được đánh số theo thứ tự từ 1 đến 10. Chọn ngẫu nhiên 3 học sinh và sắp xếp vào 3 lớp học được lấy từ 10 lớp học trên (mỗi lớp chỉ có 1 học sinh). Tính xác suất để học sinh có thứ tự lẻ thì vào lớp học được đánh số lẻ, học sinh có thứ tự chẵn thì vào lớp học được đánh số chẵn. + Trong không gian, khẳng định nào dưới đây đúng? A. Nếu hai mặt phẳng lần lượt chứa hai đường thẳng song song thì giao tuyến, nếu có, của chúng sẽ song song với cả hai đường thẳng đó. B. Nếu ba mặt phẳng cắt nhau theo ba giao tuyến thì ba giao tuyến đó đồng qui. C. Nếu hai đường thẳng a và b chéo nhau thì có hai đường thẳng p và q song song nhau mà mỗi đường đều cắt cả a và b. D. Hai đường thẳng phân biệt cùng nằm trong một mặt phẳng thì không chéo nhau.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT An Nghĩa - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT An Nghĩa, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT An Nghĩa – TP HCM : + Từ một hộp chứa 6 quả cầu trắng và 4 quả cầu đen, lấy ngẫu nhiên đồng thời 4 quả. Tính xác suất sao cho: a) Bốn quả lấy ra cùng màu. b) Có ít nhất một quả màu trắng. + Cho cấp số cộng (un) biết u4 = 10; u7 = 19. a) Tìm số hạng đầu và công sai của cấp số cộng. b) Tính tổng của 50 số hạng đầu. + Cho hình chóp S.ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD. Tìm giao điểm của SC và mặt phẳng (ABM).
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Bà Điểm - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Bà Điểm, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Bà Điểm – TP HCM : + Bạn Danh viết ngẫu nhiên lên bảng 4 số tự nhiên khác nhau thuộc [1;19]. Tính xác suất để bốn số được viết ra có tổng là một số chẵn. + Một cấp số cộng có 10 số hạng. Biết rằng tổng số hạng đầu và số hạng cuối bằng 30, tổng số hạng thứ ba và thứ sáu bằng 35. Số hạng thứ bảy của cấp số cộng là bao nhiêu. + Cho hình chóp S.ABC, gọi M, N lần lượt là trọng tâm của tam giác SAB, tam giác SBC. Gọi I là trung điểm của AC. a) Xác định giao tuyến của (BMN) và (SAC). b) Tìm giao điểm J của đường thẳng SB và mặt phẳng (IMN).
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THCSTHPT Trí Đức - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THCS & THPT Trí Đức, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THCS & THPT Trí Đức – TP HCM : + Trong một hộp có 4 bi xanh khác nhau, 6 bi đỏ khác nhau, 8 bi vàng khác nhau. Có bao nhiêu cách chọn ra 4 bi gồm 2 bi xanh, 1 bi đỏ, 1 bi vàng? + Có hai dãy ghế đối diện nhau, mỗi dãy có bốn ghế. Xếp ngẫu nhiên 8 học sinh, gồm 4 nam và 4 nữ ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Tính xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ. + Một xưởng may áo khoác tháng đầu tiên may được 365 chiếc áo. Nhờ không ngừng cải tiến kỹ thuật, gia tăng sản xuất nên kể từ tháng thứ hai, mỗi tháng đều sản xuất được nhiều hơn tháng kề trước đó 50 chiếc. Tính tổng số áo khoác mà xưởng may được sau 36 tháng hoạt động?
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Trần Văn Giàu - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Trần Văn Giàu, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Trần Văn Giàu – TP HCM : + Trên một kệ sách có 8 cuốn sách Toán, 7 cuốn sách Văn và 5 cuốn sách tiếng Anh. Chọn ngẫu nhiên 5 cuốn sách trên kệ. Tính xác suất để 5 cuốn sách được chọn: a) Cùng một loại sách. b) Có đủ ba loại sách và số sách Toán có ít nhất là 2 cuốn. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm các cạnh AB và CD. a/ Tìm giao tuyến của (SMN) với (SAC). b/ Gọi P là trung điểm cạnh SA. Chứng minh (SBC) song song (MNP). c/ Gọi G1, G2 lần lượt là trọng tâm của ΔABC và ΔSBC. Chứng minh: G1G2 // (SAB). + Cho tập hợp A = {0; 1; 2; 3; 4; 5; 6; 7}, có bao nhiêu số tự nhiên không chia hết cho 2 có 5 chữ số khác nhau lập từ tập A?