Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2024 - 2025 phòng GDĐT Thanh Chương - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Thanh Chương, tỉnh Nghệ An; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 05 năm 2024. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2024 – 2025 phòng GD&ĐT Thanh Chương – Nghệ An : + Để tổ chức hoạt động trải nghiệm tham quan các địa chỉ đỏ, trường THCS A có 720 người tham gia và dự kiến thuê một số xe cùng loại (các xe chở được số người như nhau). Lúc sắp khởi hành, do được bổ sung thêm 2 xe cùng loại nên so với dự định mỗi xe chở ít hơn 18 người. Hỏi lúc đầu ban tổ chức đã chuẩn bị bao nhiêu xe? + Một hãng sản xuất rượu vang đã đặt hàng một công ty sản xuất thủy tinh một kiểu ly có phần đựng rượu cao 6cm, đường kính miệng ly là 6cm (hình vẽ bên). Biết rằng, để tạo thành một cái ly là sự kết hợp gồm thành ly là một hình trụ cao 3cm, phần đáy ly là một nửa khối cầu có đường kính bằng với đường kính của miệng ly. Hãy tính thể tích rượu được chứa tối đa khi đổ vào ly. + Cho đường tròn tâm O, đường kính AB, dây CD vuông góc với AB tại F. Gọi M là một điểm thuộc cung nhỏ BC (M khác B; M khác C). AM cắt CD tại E. a) Chứng minh tứ giác BMEF nội tiếp. b) MD cắt AB và BC thứ tự tại T và K; AM cắt BC tại N. Chứng minh MA là tia phân giác của CMD và CM.KI = CN.KB. c) Chứng minh đường thẳng CI đi qua tâm đường tròn ngoại tiếp CEN.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hải Phòng
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hải Phòng Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Hải Phòng Đề thi tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Hải Phòng Chào mừng quý thầy cô giáo và các em học sinh! Sau đây là nội dung chính thức của đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023-2024 của sở Giáo dục và Đào tạo thành phố Hải Phòng. Kỳ thi sẽ được diễn ra vào ngày 05/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Hải Phòng: Chứng minh nếu a là số chính phương thì phương trình đã cho có hai nghiệm cũng là những số chính phương. Chứng minh rằng tam giác ABC và tam giác HAC đồng dạng và hai đường thẳng BC, EF là song song với nhau. Khi điểm P nằm trên đoạn thẳng OT, chúng ta cần chứng minh rằng hai đường thẳng BC, EF là song song với nhau. Sau đó, khám phá sự tương quan giữa các điểm U, Q, M, N để chứng minh OAH = KAQ và tính chất của đường tròn ngoại tiếp tam giác AMN. Trong một đường tròn có 8 điểm phân biệt, chúng ta cần chứng minh được tồn tại 4 dây cung không chung điểm nhau sao cho tổng các giá trị tuyệt đối của hiệu các số gán trên đầu mút của mỗi dây cung đó là 16. Đề thi mang đến những thách thức và cơ hội cho các em hoàn thiện kiến thức và kỹ năng Toán của mình. Chúc các em học sinh thi tốt và đạt kết quả cao!
Đề tuyển sinh môn Toán (vòng 2) năm 2023 trường THPT chuyên KHTN Hà Nội
Nội dung Đề tuyển sinh môn Toán (vòng 2) năm 2023 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (vòng 2) năm 2023 trường THPT chuyên KHTN Hà Nội Đề tuyển sinh môn Toán (vòng 2) năm 2023 trường THPT chuyên KHTN Hà Nội Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 môn Toán (vòng 2) năm 2023 tại trường THPT chuyên Khoa học Tự nhiên, thuộc Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội. Đề thi này được cung cấp với đáp án và lời giải chi tiết do CLB Toán A1 (gồm Nguyễn Nhất Huy, Trần Nguyễn Đức Nhật, Phan Anh Quân, Trịnh Huy Vũ) thực hiện. Một số câu hỏi đáng chú ý trong đề tuyển sinh lớp 10 môn Toán vòng 2 năm 2023 trường THPT chuyên KHTN Hà Nội bao gồm: Chứng minh tứ giác APEB nội tiếp trong tam giác ABC nếu TB > BC Chứng minh AT // AF nếu FG // AC Chứng minh điểm đối xứng của A qua QR thuộc đường tròn đường kính DN Chứng minh tồn tại hai ô kề nhau mà hai số được viết ở hai ô này có hiệu lớn hơn hoặc bằng 10 Tìm tất cả các cặp số nguyên dương (x; y) thỏa mãn phương trình 4x + (1 + 3y)(1 + 7y) = 2x(3y + 7y + 2) Đề thi tuyển sinh môn Toán (vòng 2) năm 2023 trường THPT chuyên KHTN Hà Nội mang đến cho các thí sinh những thách thức và cơ hội để thể hiện kiến thức và khả năng giải quyết vấn đề của mình.
Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Cần Thơ
Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Cần Thơ Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2023-2024 sở GD&ĐT Cần Thơ Đề tuyển sinh vào môn Toán năm 2023-2024 sở GD&ĐT Cần Thơ Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023-2024 sở Giáo dục và Đào tạo thành phố Cần Thơ. Đề thi bao gồm 20 câu trắc nghiệm và 4 câu tự luận, chiếm tỉ lệ lần lượt là 40% và 60% của đề thi. Thời gian làm bài là 120 phút, không tính thời gian phát đề. Kỳ thi sẽ diễn ra vào ngày 05 tháng 06 năm 2023. Trích dẫn một số câu hỏi từ đề tuyển sinh: 1. Bạn Phương đặt một bức tranh hình chữ nhật có chiều rộng 0,6m và chiều dài 0,8m lên một khung hình sao cho phần còn lại của khung hình quanh bức tranh có độ rộng bằng nhau và bằng x (m). Biết chu vi của khung hình là 3,6m. 2. Một phòng giáo dục và đào tạo phát động phong trào “Học sinh quyên góp sách giáo khoa lớp 9” nhằm giúp học sinh lớp 9 có hoàn cảnh khó khăn. Tổng số học sinh tham gia của Trường Trung học cơ sở A và Trường Trung học cơ sở B là 322. Mỗi học sinh của Trường Trung học cơ sở A quyên góp 6 quyển sách, mỗi học sinh của Trường Trung học cơ sở B quyên góp 5 quyển sách. Tổng số sách quyên góp của Trường Trung học cơ sở A nhiều hơn tổng số sách quyên góp của Trường Trung học cơ sở B là 172 quyển. Hỏi mỗi trường đã quyên góp được bao nhiêu quyển sách giáo khoa? 3. Cho tam giác ABC (AB AC) có ba góc nhọn, nội tiếp đường tròn tâm O. Tiếp tuyến tại A của đường tròn O cắt đường thẳng BC tại K. Từ O kẻ OD vuông góc với BC tại D, tia OD cắt đường tròn O tại E. Hãy chứng minh những điều sau: a) Tứ giác KDOA nội tiếp. b) Tam giác KNA cân và 2 KN KB KC. c) Tia MN và tia ED cắt nhau tại một điểm thuộc đường tròn O.
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hưng Yên
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hưng Yên Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hưng Yên Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hưng Yên Xin chào quý thầy cô và các em học sinh! Hôm nay, Sytu xin giới thiệu đến bạn đề chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 của sở Giáo dục và Đào tạo tỉnh Hưng Yên. Đề thi này dành cho các thí sinh dự thi vào các lớp chuyên Toán và chuyên Tin học. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hưng Yên: + Bài toán 1: Tìm các giá trị của tham số m để đường thẳng (d): y = (m + 2)x – m – 8 cắt parabol (P): y = x^2 tại hai điểm phân biệt nằm bên phải trục tung và có hoành độ x1, x2 thỏa mãn x1^3 – x2 = 0. + Bài toán 2: Chứng minh rằng bốn điểm O, M, H, I cùng thuộc một đường tròn. Xác định vị trí của điểm M để đoạn thẳng MN có độ dài nhỏ nhất, trong tam giác ABC đều nội tiếp đường tròn (O;R), H là trung điểm của cạnh BC, M thuộc đoạn BH, N thuộc đoạn CA sao cho CN = BM, I là trung điểm của đoạn MN. + Bài toán 3: Một bình thủy tinh hình trụ cao 30cm chứa nước, diện tích đáy bình bằng 1/6 diện tích xung quanh, mặt nước cách đáy bình là 18cm. Cần đổ bao nhiêu lít nước nữa để bình vừa đầy? (Bỏ qua bề dày của bình, cho pi = 3,14 và kết quả làm tròn đến chữ số thập phân thứ nhất). Với những bài toán thú vị và bổ ích như vậy, chúng ta hãy cùng nghiên cứu và giải quyết để chuẩn bị cho kỳ thi tuyển sinh sắp tới nhé! Chúc mọi người thành công!