Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kỳ 1 Toán 9 năm 2023 - 2024 trường THCS Trần Quang Khải - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2023 – 2024 trường THCS Trần Quang Khải, quận 12, thành phố Hồ Chí Minh; đề thi gồm 02 trang, cấu trúc 100% tự luận với 07 bài toán, thời gian làm bài 90 phút; kỳ thi được diễn ra vào ngày 19 tháng 12 năm 2023. Trích dẫn Đề cuối kỳ 1 Toán 9 năm 2023 – 2024 trường THCS Trần Quang Khải – TP HCM : + Một người có tầm mắt cách mặt đất 1,6m đứng cách toà nhà 270m nhìn thấy đỉnh toà nhà với góc nâng 32° như hình vẽ. Tính chiều cao của toà nhà? (kết quả cuối cùng làm tròn đến mét, học sinh phải vẽ hình minh họa vào bài làm). + Một công ty dịch vụ làm đơn vị phân phối bán vé xem các trận đấu bóng đá phân phối vé cho 2 đơn vị A và B cùng nhau bán 990 vé ở hai địa điểm khác nhau, giá bán một vé lúc đầu hai đơn vị dự định bán là 400 000 đồng. Khi bán, đơn vị A giảm 15% so với giá lúc đầu còn đơn vị B giảm 20% nên đơn vị B bán được nhiều vé hơn đơn vị A. Đến gần ngày khai mạc giải, cả hai đơn vị đã bán hết số vé và số tiền thu về của hai đơn vị bằng nhau. Hỏi mỗi đơn vị đã bán được bao nhiêu vé? + Càng lên cao không khí càng loãng nên áp suất khí quyển càng giảm. Gọi y là đại lượng biểu thị cho áp suất khí quyển (mmHg) và x là đại lượng biểu thị cho độ cao so với mực nước biển (mét). Người ta thấy với những độ cao không lớn lắm thì mối liên hệ giữa hai đại lượng này là một hàm số bậc nhất y = ax + b có thị như hình. a) Hãy xác định hệ số a, b. b) Một vận động viên leo núi đo được áp suất khí quyển là 520mmHg. Hỏi vận động viên leo núi đang ở độ cao bao nhiêu mét so với mực nước biển?

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 9 năm 2020 - 2021 phòng GDĐT TP Đà Lạt - Lâm Đồng
Đề thi HK1 Toán 9 năm 2020 – 2021 phòng GD&ĐT TP Đà Lạt – Lâm Đồng được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 13 bài toán, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán 9 năm 2020 – 2021 phòng GD&ĐT TP Đà Lạt – Lâm Đồng : + Cho nửa đường tròn tâm O đường kính AB = 2R. Trên nửa đường tròn lấy điểm C (C khác A và B). Gọi D là giao điểm của đường thẳng BC với tiếp tuyến tại A của nửa đường tròn tâm O. Chứng minh: BC.BD = 4R2. + Cho đường thẳng (d1): y = 2x – (m + 6) với m là tham số. Tìm giá trị của m để hai đường thẳng (d1) và (d2): y = 3x – 2 cắt nhau tại một điểm trên đường thẳng (d3): y = x + 1. + Cho nửa đường tròn tâm O đường kính BC. Gọi A là một điểm nằm trên nửa đường tròn (O), A khác B, A khác C. Gọi H là hình chiếu vuông góc của A trên BC, D là điểm đối xứng với B qua A, I là trung điểm AH, J là trung điểm của DH. Gọi E là giao điểm của HD và CI. Cho biết tam giác AJH đồng dạng tam giác HIC. Chứng minh: 2AE < AB.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Gia Lâm - Hà Nội
Đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Gia Lâm – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào thứ Bảy ngày 26 tháng 12 năm 2020. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Gia Lâm – Hà Nội : + Cho đường tròn (O;R) và điểm M cố định ngoài (O), kẻ các tiếp tuyến MA, MB với (O) (A, B là tiếp điểm). 1. Chứng minh rằng bốn điểm M, A, O, B thuộc một đường tròn. 2. Kẻ đường kính BD của (O). Chứng minh AM vuông góc AB và MO song song với AD. 3. Trên cung nhỏ AB lấy điểm E và từ E kẻ tiếp tuyến với (O) cắt MA, MB lần lượt tại I và K. Chứng minh chu vi tam giác MIK và độ lớn góc IOK không phụ thuộc vào vị trí điểm E. 4. Đường thẳng qua O vuông góc với OM cắt MA, MB lần lượt tại H và G. Tìm vị trí điểm E để tổng IH + KG có độ dài nhỏ nhất. + Để đo chiều cao h của ngọn tháp một cách gián tiếp, bạn Nam đã dùng thước ngắm tại các vị trí A, B để nhìn lên ngọn tháp. Biết AB = 24m, góc nhìn lên ngọn tháp tại các vị trí A, B lần lượt là A = 63°, B = 48°. Em hãy giúp bạn Nam tính chiều cao h của ngọn tháp (làm tròn đến chữ số thập phân thứ nhất).
Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Cầu Giấy - Hà Nội
Đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Cầu Giấy – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được tổ chức ngày 23 tháng 12 năm 2020. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Cầu Giấy – Hà Nội : + Cho hàm số y = (m – 1)x + m – 3 (1) (với m là tham số và m khác 1). a) Khi m = 0, hãy vẽ đồ thị hàm số (1) trên mặt phẳng tọa độ Oxy. b) Tìm m để đồ thị hàm số (1) cắt trục tung tại điểm có tung độ bằng 1. c) Gọi A, B lần lượt là giao điểm của đồ thị hàm số (1) với hai trục tọa độ Ox, Oy. Tìm m sao cho tam giác OAB cân. + Ở Hà Nội có một tam giác vuông đặc sắc với đỉnh A (phía Đông) là vị trí Văn Miếu, đỉnh B (phía Bắc) là Nhà Quốc hội, đỉnh C (phía Tây) là Nhà hát Lớn, trong đó A = 90° và B = 72°. Con đường thẳng từ Văn Miếu đến Nhà hát Lớn qua các phố Nguyễn Thái Học, Tràng Thi, Hàng Khay, Tràng Tiền dài khoảng 2,3 km. Hỏi độ dài đoạn đường thẳng từ Văn Miếu đến Nhà Quốc hội là bao nhiêu ki-lô-mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho đường tròn (O;R) và dây AB khác đường kính. Kẻ OI vuông góc với AB tại I, tiếp tuyến của đường tròn (O) tại A cắt đường thẳng OI tại M. a) Chứng minh: OI.OM = R^2. b) Chứng minh MB là tiếp tuyến của đường tròn (O) và bốn điểm A, B, M, O cùng thuộc một đường tròn. c) Kẻ đường kính AD của đường tròn (O), tiếp tuyến của đường tròn (O) tại D cắt đường thẳng AB tại điểm N. Chứng minh MD vuông góc với ON.
Đề thi cuối học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Thanh Xuân - Hà Nội
Sáng thứ Sáu ngày 25 tháng 12 năm 2020, phòng Giáo dục và Đào tạo quận Thanh Xuân, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 9 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề thi cuối học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Thanh Xuân – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi cuối học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Thanh Xuân – Hà Nội : + Để lên sân thượng của một ngôi nhà một tầng cao 3,8m, người ta dùng một chiếc thang dài 4m được đặt như hình vẽ. Hỏi cách đặt thang như vậy đã đảm bảo an toàn chưa? Biết thang ở vị trí an toàn cho người dùng khi thang tạo với mặt đất một góc có độ lớn từ 60° đến 75°. + Cho hàm số bậc nhất y = (m – 1)x + 4 có đồ thị là đường thẳng (d) (m là tham số và m khác 1). 1) Với giá trị nào của m thì đường thẳng (d) song song với đường thẳng y = -3x + 2. 2) Tìm m để đường thẳng (d) cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho diện tích tam giác OAB bằng 2. + Cho đường tròn (O) đường kính AB. Vẽ tia tiếp tuyến Ax của đường tròn (O). Trên cùng một nửa mặt phẳng bờ AB có chứa tia Ax, lấy điểm M thuộc đường tròn (O) (M khác A, M khác B) sao cho MA > MB. Tiếp tuyến của đường tròn (O) tại M cắt tia Ax tại E. 1) Chứng minh bốn điểm A, E, M, O cùng thuộc một đường tròn. 2) Chứng minh OE song song với MB. 3) Gọi F là giao điểm của EB với đường tròn (O). Chứng minh EFM = EMB.