Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh THPT năm 2019 2020 sở GD và ĐT Đắk Lắk

Nội dung Đề Toán tuyển sinh THPT năm 2019 2020 sở GD và ĐT Đắk Lắk Bản PDF - Nội dung bài viết Đề Toán tuyển sinh THPT năm 2019-2020 sở GD và ĐT Đắk Lắk Đề Toán tuyển sinh THPT năm 2019-2020 sở GD và ĐT Đắk Lắk Ngày 07 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Đắk Lắk đã tổ chức kỳ thi môn Toán tuyển sinh vào lớp 10 Trung học Phổ thông năm học 2019 – 2020. Mục tiêu của kỳ thi là lựa chọn các học sinh lớp 9 có khả năng về học lực môn Toán, để họ có cơ hội học tập tại các trường THPT thuộc sở GD&ĐT Đắk Lắk và chuẩn bị cho năm học tiếp theo. Đề Toán tuyển sinh lớp 10 THPT năm 2019-2020 của sở GD và ĐT Đắk Lắk bao gồm 5 bài toán, được biên soạn theo dạng tự luận và có thời gian làm bài là 120 phút. Đề thi cũng đi kèm với lời giải chi tiết để học sinh có thể tự kiểm tra kết quả của mình. Dưới đây là một số đề bài mẫu được trích dẫn từ đề Toán tuyển sinh lớp 10 THPT năm 2019-2020 sở GD và ĐT Đắk Lắk: 1. Một cốc nước dạng hình trụ có chiều cao 12cm, bán kính đáy 2cm, lượng nước trong cốc cao 8cm. Người ta thả vào cốc nước 6 viên bi hình cầu có cùng bán kính 1cm và ngập hoàn toàn trong nước làm nước trong cốc dâng lên. Hỏi sau khi thả 6 viên bi vào thì mực nước trong cốc cách miệng cốc bao nhiêu xentimét? 2. Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình y = -x + √2/2. Gọi A, B lần lượt là giao điểm của d với trục hoành và trục tung; H là trung điểm của AB. Tính độ dài đoạn thẳng OH (đơn vị đo trên các trục tọa độ là xentimét). 3. Cho đường tròn (O) hai đường kính AB, CD vuông góc với nhau. Điểm M thuộc cung nhỏ BD sao cho góc BOM = 30 độ. Gọi N là giao điểm của CM và OB. Tiếp tuyến tại M của đường tròn (O) cắt OB, OD kéo dài lần lượt tại E và F. Đường thẳng qua N và vuông góc với AB cắt EF tại P. Sau đó học sinh cần chứng minh và giải các yêu cầu liên quan đến tứ giác, tam giác và các đoạn thẳng trong bài toán. Đề Toán tuyển sinh lớp 10 THPT năm 2019-2020 của sở GD và ĐT Đắk Lắk đưa ra những bài toán đa dạng, giúp học sinh phát triển tư duy logic và khả năng giải quyết vấn đề. Đồng thời, đề cũng mang đến những bài toán thú vị, đòi hỏi sự tập trung và kiên nhẫn từ phía các thí sinh.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên Đại học Sư Phạm Hà Nội, thành phố Hà Nội; đề thi dùng cho mọi thí sinh (vòng 1), có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên ĐHSP Hà Nội : + Một khay nước có nhiệt độ 125◦F khi bắt đầu cho vào tủ đá. Ở trong tủ đá, cứ sau mỗi giờ, nhiệt độ khay nước lại giảm đi 20%. Hỏi sau bao nhiêu giờ, nhiệt độ khay nước chỉ còn là 64◦F. + Cho hình bình hành ABCD có ABC = 120◦ và BC = 2AB. Dựng đường tròn (O) có đường kính AC. Gọi E, F lần lượt là các giao điểm thứ hai của AB, AD với đường tròn (O). Đường thẳng EF lần lượt cắt các đường thẳng BC, BD tại H, S. Chứng minh a) Tam giác ABD là tam giác vuông. b) Tứ giác OBEH là tứ giác nội tiếp. c) SC là tiếp tuyến của dường tròn (O). + Trên bảng ta viết đa thức P(x) = ax2 + bx + c (a khác 0). Ta viết lên bảng đa thức mới P1(x) = P(x + 1) + P(x − 1)2 rồi xóa đi đa thức P(x). Ta viết lên bảng đa thức mới P2(x) = P1(x + 1) + P1(x − 1)2 rồi xóa đi đa thức P1(x). Ta cứ tiếp tục làm như thế nhiều lần. Chứng minh rằng nếu cứ làm như vậy nhiều lần thì đến một lúc nào đó ta nhận được một đa thức không có nghiệm.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bạc Liêu; kỳ thi được diễn ra vào ngày 31 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Bạc Liêu : + Cho biểu thức H = n2 – n – 5. Tìm tất cả các số nguyên dương n để H là một số chính phương. Tìm các số nguyên x, y sao cho: x(x + y)2 = y – 1. + Cho tam giác ABC đều nội tiếp đường tròn (O). H là trung điểm của BC; M là điểm bất kì thuộc đoạn thẳng BH (M khác B; M khác H). Lấy điểm N thuộc đoạn thẳng CA sao cho CN = BM. Gọi I là trung điểm của MN. a) Chứng minh bốn điểm O, M, H, I cùng thuộc một đường tròn. b) Gọi K là giao điểm của OI và AB. Chứng minh MNK là tam giác đều. c) Xác định vị trí của điểm M để IAB có chu vi nhỏ nhất. + Cho đường tròn (O;R) có dây BC cố định (BC < 2R) và điểm A trên cung lớn BC (A khác B; A khác C; A không là điểm chính giữa cung lớn BC). Gọi H là hình chiếu của A trên BC; E và F lần lượt là hình chiếu của B và C trên đường kính AK. a) Chứng minh HE vuông góc AC. b) Chứng minh SABC/AB.BC.AC = 1/4R. c) Chứng minh tâm đường tròn ngoại tiếp HEF là một điểm cố định khi điểm A di động trên cung lớn BC.
Đề tuyển sinh lớp 10 chuyên môn Toán (vòng 2) năm 2023 - 2024 trường ĐHKH Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (vòng 2 – chuyên Toán và chuyên Tin) năm học 2023 – 2024 trường Đại học Khoa học Huế, tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào ngày 30 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán (vòng 2) năm 2023 – 2024 trường ĐHKH Huế : + Trên mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (m + 1)x − 2m + 3 (m là tham số) và parabol (P): y = x2. Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt. Gọi x1, x2 lần lượt là hoành độ hai giao điểm, xác định m để |x1|, |x2| là độ dài hai cạnh của một hình chữ nhật có độ dài đường chéo bằng 10. + Tìm tất cả các số nguyên n để A = n2 + 4n + 7 là một số chính phương. Chứng minh rằng M = (p − 1)(p + 1) chia hết cho 12 với p là số nguyên tố lớn hơn 3. + Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm phân biệt A, B. Điểm C thuộc đường tròn (O) sao cho C và O cùng thuộc nửa mặt phẳng bờ là đường thẳng AB. Tiếp tuyến của đường tròn (O) tại điểm C cắt đường thẳng AB tại D. Đường tròn tâm D bán kính DC cắt đường tròn (O) tại điểm thứ hai E, cắt đường tròn (O’) tại F và G trong đó F nằm bên trong đường tròn (O). Gọi H là giao điểm của DO với CE, K là giao điểm của DO’ và FG. a) Chứng minh DC2 = DA.DB và DG là tiếp tuyến của đường tròn (O’). b) Chứng minh tứ giác OHKO’ nội tiếp. c) Chứng minh CE, FG và AB đồng quy.
Đề tuyển sinh lớp 10 chuyên môn Toán (vòng 1) năm 2023 - 2024 trường ĐHKH Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (vòng 1) năm học 2023 – 2024 trường Đại học Khoa học Huế, tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào ngày 30 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán (vòng 1) năm 2023 – 2024 trường ĐHKH Huế : + Theo kế hoạch, một xưởng phải may xong 560 bộ quần áo trong thời gian quy định với năng suất mỗi ngày là như nhau. Đến khi thực hiện, do tăng năng suất nên mỗi ngày xưởng đó may được nhiều hơn 10 bộ quần áo so với kế hoạch. Vì thế, xưởng đã hoàn thành trước kế hoạch 1 ngày. Hỏi theo kế hoạch, mỗi ngày xưởng đó phải may xong bao nhiêu bộ quần áo? + Qua điểm A nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến AB, AC (B, C là các tiếp điểm) và cát tuyến AEF (AE < AF) sao cho tia AE nằm giữa hai tia AB, AO. Gọi H là giao điểm của AO và BC. a) Chứng minh tứ giác ABOC nội tiếp. b) Chứng minh AB2 = AE.AF và tứ giác EFOH nội tiếp. c) Từ E vẽ đường thẳng song song với BF cắt AB tại M và cắt BC tại N. Chứng minh E là trung điểm của đoạn thẳng MN. + Một khối đồ chơi có hình dạng là một hình trụ và một hình nón chung đáy. Biết chiều cao khối đồ chơi là h = 9 cm, chiều cao hình nón là h1, chiều cao hình trụ là h2 và h2 = 2h1. Bán kính đáy hình trụ là r = 4 cm (xem hình vẽ bên). Tính thể tích của khối đồ chơi đó.