Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề quỹ tích ôn thi vào lớp 10

Tài liệu gồm 52 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề quỹ tích, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. PHƯƠNG PHÁP CHUNG ĐỂ GIẢI BÀI TOÁN QUỸ TÍCH I. Định nghĩa: Một hình H được gọi là tập hợp điểm (quỹ tích) của những điểm M thỏa mãn tính chất A khi và chỉ khi nó chứa và chỉ chứa những điểm có tính chất A. II. Phương pháp giải toán: Để tìm một tập hợp điểm M thỏa mãn tính chất A ta thường làm theo các bước sau: Bước 1: Tìm cách giải: + Xác định các yếu tố cố định, không đổi, các tính chất hình học có liên quan đến bài toán. + Xác định các điều kiện của điểm M. + Dự đoán tập hợp điểm. Bước 2: Trình bày lời giải: A. Phần thuận: Chứng minh điểm M thuộc hình H. B. Giới hạn: Căn cứ vào các vị trí đặc biệt của điểm M để chứng minh điểm M chỉ thuộc một phần B của hình H (nếu có). C. Phần đảo: Lấy điểm M bất kỳ thuộc B. Ta chứng minh điểm M thoả mãn các tính chất A. D. Kết luận: Tập hợp các điểm M là hình B (nêu rõ hình dạng và cách dựng hình B). III. Một số dạng quỹ tích cơ bản trong chương trình THCS: 1. TẬP HỢP ĐIỂM LÀ ĐƯỜNG TRUNG TRỰC: Tập hợp các điểm M cách đều hai điểm A B cho trước là đường trung trực của đoạn thẳng AB. 2. TẬP HỢP ĐIỂM LÀ TIA PHÂN GIÁC: Tập hợp các điểm M nằm trong góc xOy khác góc bẹt và cách đều hai cạnh của góc xOy là tia phân giác của góc xOy. 3. TẬP HỢP ĐIỂM LÀ ĐƯỜNG THẲNG, ĐƯỜNG THẲNG SONG SONG: Ta thường gặp các dạng tập hợp cơ bản như sau: 1. Tập hợp các điểm M nằm trên đường thẳng đi qua các điểm cố định A B là đường thẳng AB. 2. Tập hợp các điểm M nằm trên đường thẳng đi qua điểm cố định A tạo với đường thẳng d một góc không đổi. 3. Tập hợp các điểm M cách đường thẳng d cho trước một đoạn không đổi h là các đường thẳng song song với d và cách đường thẳng d một khoảng bằng h. 4. TẬP HỢP ĐIỂM LÀ ĐƯỜNG TRÒN, CUNG CHỨA GÓC: 1. Nếu A B cố định. Thì tập hợp các điểm M sao cho 0 AMB 90 là đường tròn đường kính AB (không lấy các điểm A B). 2. Nếu điểm O cố định thì tập hợp các điểm M cách O một khoảng không đổi R là đường tròn tâm O bán kính R. 3. Tập hợp các điểm M tạo thành với 2 đầu mút của đoạn thẳng AB cho trước một góc MAB không đổi 0 0 180 là hai cung tròn đối xứng nhau qua AB. Gọi tắt là “cung chứa góc”. MỘT SỐ BÀI TẬP TỔNG HỢP

Nguồn: toanmath.com

Đọc Sách

137 câu giải toán bằng cách lập PT - HPT trong đề thi vào lớp 10 môn Toán
Tài liệu gồm 84 trang, được tổng hợp bởi thầy giáo Nguyễn Chí Thành, tuyển tập 137 câu giải toán bằng cách lập phương trình hoặc hệ phương trình trong các đề thi tuyển sinh vào lớp 10 môn Toán. Trích dẫn tài liệu 137 câu giải toán bằng cách lập PT – HPT trong đề thi vào lớp 10 môn Toán: + Khảo sát vòng 1 – THCS Ái Mộ – Long Biên – 2019 – 2020: Một máy bơm theo kế hoạch phải bơm đầy nước vào một bể cạn có dung tích 50 m3 trong một thời gian nhất định. Người công nhân vận hành máy đã cho máy bơm hoạt động với công suất tăng thêm 5 m3 / giờ, cho nên đã bơm đầy bể sớm hơn quy định 1 giờ 40 phút. Hỏi theo kế hoạch, mỗi giờ máy bơm phải bơm được bao nhiêu mét khối nước. + Trung tâm Bồi dưỡng Văn hóa Hà Nội – Amsterdam: Hội trường 200 chỗ của trường THPT Chuyên Hà Nội – Amsterdam có đúng 200 ghế được chia đều vào các dãy. Nhằm giãn cách xã hội, trong đợt phòng chống dịch COVID-19 để mỗi dãy bớt đi 2 ghế mà số ghế trong hội trường không đổi thì nhà trường phải kê thêm 5 dãy như thế nữa. Hỏi ban đầu, số ghế trong hội trường được chia thành bao nhiêu dãy? + Một ca nô đi xuôi dòng 54 km rồi quay ngược dòng 46 km và tổng thời gian cả đi lẫn về là 4 giờ. Nếu ca nô đi xuôi dòng 81 km và ngược dòng 23 km thì tổng thời gian đi cũng hết 4 giờ. Tính vận tốc riêng của ca nô và vận tốc của dòng nước, biết các vận tốc đó không đổi.
200 bài tập rút gọn biểu thức và bài toán liên quan trong đề thi vào 10 môn Toán
Tài liệu gồm 185 trang, được tổng hợp bởi thầy giáo Nguyễn Chí Thành, tuyển tập 200 bài tập rút gọn biểu thức và bài toán liên quan trong các đề thi tuyển sinh vào lớp 10 môn Toán, có đáp án và lời giải chi tiết. Trích dẫn tài liệu 200 bài tập rút gọn biểu thức và bài toán liên quan trong đề thi vào 10 môn Toán: + Cho biểu thức A và B. a) Tính giá trị biểu thức B khi x = 25. b) Biết P = B : A. Chứng minh rằng: P. c) Tìm giá trị nguyên của x để P nhận giá trị nguyên. + Cho biểu thức A. a) Rút gọn biểu thức A. b) Tính giá trị của x để A = 4/5. c) Tìm giá trị lớn nhất của biểu thức A. + Cho hai biểu thức A và B với x >= 0 và x khác 1. a) Tính giá trị của biểu thức A khi x = 4. b) Rút gọn biểu thức C = A + B. c) So sánh giá trị của biểu thức C với 1.
Tuyển tập 400 bài toán hình học trong các đề thi vào lớp 10 môn Toán
Tài liệu gồm 567 trang, tuyển tập 400 bài toán hình học trong các đề thi vào lớp 10 môn Toán, có đáp án / đáp số và lời giải chi tiết. Trích dẫn tài liệu tuyển tập 400 bài toán hình học trong các đề thi vào lớp 10 môn Toán: + Cho đường tròn (O) và đường kính AB R cm 2 10. Gọi C là trung điểm OA. Qua C kẻ dây MN vuông góc với OA tại C. Gọi K là điểm tùy ý trên cung nhỏ MB, H là giao điểm AK và MN. Chứng minh: a) Tứ giác BHCK nội tiếp, AMON là hình thoi. b) 2 AK AH R và tính diện tích hình quạt tao bởi OM, OB và cung MB. c) Trên KN lấy I sao cho KI KM, chứng minh NI KB. d) Tìm vị trí điểm K để chu vi tam giác MKB lớn nhất. + Cho nửa đường tròn (O;R) đường kính AB. Bán kính OC AB. Điểm E thuộc đoạn OC. Tia AE cắt nửa đường tròn (O) tại M. Tiếp tuyến của nửa đường tròn tại M cắt OC tại D. Chứng minh: a) Tứ giác OEMB nội tiếp và MDE cân. b) Gọi BM cắt OC tại K. Chứng minh BM BK không đổi khi E di chuyển trên OC và tìm vị trí của E để MA MB 2. c) Cho 0 ABE 30 tính S MOB và chứng minh khi E di chuyển trên OC thì tâm đường tròn ngoại tiếp CME thuộc một đường thẳng cố định. + Cho ABC đều nội tiếp (O;R) kẻ đường kính AD cắt BC tại H. Gọi M là một điểm trên cung nhỏ AC. Hạ BK AM tại K, BK cắt CM tại E, R cm 6. Chứng minh: a) Tứ giác ABHK nội tiếp và MBE cân. b) Tứ giác BOCD là hình thoi và gọi BE cắt (O) tại N và tính S MON. c) Tìm vị trí của M để chu vi MBE lớn nhất và tìm quỹ tích điểm E khi M di chuyển trên cung nhỏ AC.
Tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh lớp 10 chuyên Toán
Tài liệu gồm 67 trang, được biên soạn bởi tác giả Nguyễn Nhất Huy (Tạp Chí Và Tư Liệu Toán Học), tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh lớp 10 chuyên Toán, có lời giải chi tiết. Mục lục tài liệu tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh lớp 10 chuyên Toán: 1 Các kiến thức cơ bản về bất đẳng thức. 1.1 Một số kí hiệu sử dụng trong tài liệu (Trang 2). 1.2 Bất đẳng thức AM – GM (Trang 2). 1.3 Bất đẳng thức Cauchy – Schwarz (Trang 2). 1.4 Điều kiện có nghiệm của phương trình (Trang 2). 2 Các bài toán bất đẳng thức trong các kì thi tuyển sinh vào lớp 10 chuyên Toán. 3 Giới thiệu một số phương pháp chứng minh bất đẳng thức khác. 3.1 Tam thức bậc hai và phương pháp miền giá trị (Trang 38). 3.2 Phương pháp đổi biến PQR và bất đẳng thức Schur (Trang 45). 3.3 Phân tích tổng bình phương SOS và phân tích Schus – SOS (Trang 51). 4 Các bài toán luyện tập.