Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Sóc Sơn Hà Nội

Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Sóc Sơn Hà Nội Bản PDF - Nội dung bài viết Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 - 2021 phòng GD ĐT Sóc Sơn Hà Nội Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 - 2021 phòng GD ĐT Sóc Sơn Hà Nội Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 9 đề thi học kì 1 môn Toán năm học 2020 - 2021 của phòng Giáo dục và Đào tạo Sóc Sơn, thành phố Hà Nội. Dưới đây là một số câu hỏi trích dẫn từ đề thi: Câu 1: Một máy bay cất cánh theo phương có góc nâng là 23 độ so với mặt đất. Hỏi muốn đạt độ cao 250m so với mặt đất thì máy bay phải bay lên một đoạn đường là bao nhiêu mét? Câu 2: Cho nửa đường tròn O-R; đường kính AB. Lấy điểm C thuộc nửa đường tròn (C khác A và B). Kẻ OE vuông góc với CB (E thuộc CB). Kẻ tiếp tuyến Bx của nửa đường tròn, tiếp tuyến này cắt OE tại D. a) Chứng minh 2 OE OD = R. b) Chứng minh CD là tiếp tuyến của O. c) Tứ giác ACDO là hình gì? Vì sao? d) Kẻ CH vuông góc với AB, CH cắt AD tại K. Chứng minh K là trung điểm của AD. Câu 3: Cho hàm số y = mx + m - 1/4 (với m ≠ 1) có đồ thị là đường thẳng d. 1) Với giá trị nào của m thì hàm số đã cho nghịch biến? 2) Tìm m để đường thẳng d cắt đường thẳng y = x^2 + 5 tại một điểm trên trục tung. 3) Tìm m để đường thẳng d đi qua điểm A(1, 3). Đề thi nêu trên mang đến cho các em học sinh cơ hội để thể hiện kiến thức và kỹ năng của mình trong môn Toán. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Gò Vấp - TP. HCM
Đề thi học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Gò Vấp – TP. HCM gồm 7 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi HK1 Toán 9 : Cho đường tròn (O; R). Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC của (O) (B và C là các tiếp điểm); OA cắt BC tại H. a) Chứng minh OA là đường trung trực của đoạn BC và OH.OA = R^2 b) Vẽ đường kính CD của (O), AD cắt (O) tại điểm E khác D, BC cắt DE tại K, EC cắt OA tại V, tia KV cắt AC tại M. Chứng minh CE ⊥ AK và V là trung điểm của đoạn KM. c) Vẽ đường thẳng OT vuông góc với DE tại T, OT cắt đường thẳng BC tại Q. Chứng minh QD là tiếp tuyến của đường tròn (O). Giải: a) OA là đường trung trực của đoạn BC Ta có AB = AC ( tính chất 2 tiếp tuyến cắt nhau) OB = OC = R Vậy OA là đường trung trực của BC ⇒ OA ⊥ BC tại H và HB = HC Chứng minh OH.OA = R^2 AB , AC là tiếp tuyến với (O) tại B và C ⇒ AB ⊥ OB và AC ⊥ OB Xét △OAB vuông tại B , BH⊥OA , ta có OB^2 = OH.OA =R^2 (hệ thức lượng trong tam giác vuông) [ads] b) CE⊥ AKV là trung điểm của đoạn KM Ta có △CDE nội tiếp đường tròn (O) có cạnh CD là đường kính Vậy △CDE vuông tại E ⇒ CE ⊥ DE hay CE ⊥ AK Chứng minh V là trung điểm của đoạn KM Do CE ⊥ AK và AH ⊥ CK (vì OA ⊥ BC) ⇒ V là trực tâm của △ACK ⇒ KV ⊥ AC tại M và CD ⊥ AC ⇒ KM//CD KV//OD ⇒ KV/OD = AV/AO (hệ quả định lí Talet) VM//OC ⇒ VM/OC = AV/AO (hệ quả định lí Talet) ⇒ KV/OD = VM/OC ⇒ KV = VM (vì OD = OC = R) Vậy V là trung điểm của KM c) QD là tiếp tuyến của đường tròn (O) Xét △OBQ vuông tại H và △OTA vuông tại T, ta có: ∠O chung ⇒ △OBQ ∽ △OTA (g.g) ⇒ OT.OQ = OH.OA Vì OD^2 = OB^2 = OH.OA ⇒ OD^2 = OT.OQ ⇒ △ODQ ∽ △OTD (c.g.c) ⇒ ∠ODQ = ∠OTD = 90° ⇒ DQ ⊥ OD Mà OD = R ⇒ QD là tiếp tuyến với (O) tại D
Đề thi HKI Toán 9 năm học 2017 - 2018 phòng GD và ĐT Nam Từ Liêm - Hà Nội
Đề thi HKI Toán 9 năm học 2017 – 2018 phòng GD và ĐT Nam Từ Liêm – Hà Nội gồm 4 câu hỏi trắc nghiệm (chiếm 1 điểm) và 5 bài toán tự luận (chiếm 9 điểm), thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 9 : + Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AE đến đường tròn (O) (với E là tiếp điểm). Vẽ dây EH vuông góc với AO tại M. a) Cho biết bán kính R = 5cm, OM = 3cm. Tính độ dài dây EH. b) Chứng minh: AH là tiếp tuyến của đường tròn (O). c) Đường thẳng qua O vuông góc với OA cắt AH tại B. Vẽ tiếp tuyến BF với đường tròn (O) (F là tiếp điểm). Chứng minh: 3 điểm E, O, F thẳng hàng và BF.AE = R^2. d) Trên tia HB lấy điểm I (I khác B), qua I vẽ tiếp tuyến thứ hai với đường tròn (O) cắt các đường thẳng BF, AE lần lượt tại C và D. Vẽ đường thẳng IF cắt AE tại Q. Chứng minh: AE = DQ. [ads] + Cho hàm số y = (m – 4)x + 4 có đồ thị là đường thẳng d (m khác 4) a) Tìm m để đồ thị hàm số đi qua A(1;6). b) Vẽ đồ thị hàm số với m vừa tìm được ở câu a. Tính góc tạo bởi đồ thị hàm số vừa vẽ với trục Ox (làm tròn đến phút). c) Tìm m để đường thẳng (d) song song với đường thẳng (d1): y = (m – m^2)x + m + 2 + Cho tam giác MNP vuông tại M, đường cao MH. Chọn hệ thức sai: A. MH^2 = HN.HB B. MP^2 = NH.HP C. MH.NP = MN.MP D. 1/MN^2 + 1/MP^2 = 1/MH^2
Đề thi HK1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Bảo - Hải Phòng
Đề thi HK1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Bảo – Hải Phòng gồm 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Cho đường tròn (O;R) đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’) với đường tròn (O). Một đường thẳng đi qua O cắt đường thẳng (d) ở M và cắt đường thẳng (d’) ở P. Từ O kẻ một tia vuông góc với MP và cắt đường thẳng (d’) ở N. Kẻ OI ⊥ MN tại I. a) Chứng minh: OM = OP và ∆NMP cân b) Chứng minh: OI = R và MN là tiếp tuyến của đường tròn (O). c) TínhAIB d) Tìm vị trí của M để diện tích tứ giác AMNB là nhỏ nhất? [ads] + Cho hàm số y = (m – 2)x + 3 (d) a) Xác định m biết (d) đi qua A(1; -1). Vẽ đồ thị hàm số với m vừa tìm được. b) Viết phương trình đường thẳng đi qua điểm B(-2; 2) và song song với đường thẳng vừa tìm được ở câu a. + Cho a, b > 0; Chứng minh rằng: 3(b^2 + 2a^2) ≥ (b + 2a)^2
Đề thi HK1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Cầu Giấy - Hà Nội
Đề thi HK1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Cầu Giấy – Hà Nội gồm 2 trang với 2 phần: + Phần 1. Trắc nghiệm khách quan: Bao gồm 8 câu hỏi, chiếm 20% số điểm. + Phần 2. Tự luận: Bao gồm 4 câu hỏi, chiếm 80% số điểm Kỳ thi diễn ra vào ngày 15/12/2017 [ads]