Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán 8 năm 2022 - 2023 sở GDĐT Nam Định

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 8 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nam Định; kỳ thi được diễn ra vào thứ Sáu ngày 10 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và thang điểm. Trích dẫn Đề thi chọn học sinh giỏi Toán 8 năm 2022 – 2023 sở GD&ĐT Nam Định : + Cho tam giác ABC nhọn (AB AC). Các đường cao AD BM CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của đoạn thẳng BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với đường thẳng BE tại F. 1) Tính số đo FMN. 2) Gọi KLR lần lượt là chân các đường vuông góc kẻ từ N đến các đường thẳng AC AD BC. Gọi giao điểm của DM và CN là S. Chứng minh rằng: a) Ba điểm KLR thẳng hàng. b) HN CS NC SH. 3) Tia phân giác của BAC cắt BC tại I, kẻ đường thẳng đi qua C và vuông góc với đường thẳng AI tại P, đường thẳng CP cắt đường thẳng AO tại Q. Gọi G là trung điểm của đoạn thẳng IQ. Chứng minh đường thẳng PG đi qua trung điểm của đoạn thẳng AC. + Một chiếc hộp đựng 99 chiếc thẻ màu vàng, 100 chiếc thẻ màu đỏ và 101 chiếc thẻ màu xanh. Người ta tiến hành trò chơi rút thẻ như sau: mỗi lần rút thẻ người ta lấy ra hai chiếc thẻ khác màu và thay vào đó bằng hai chiếc thẻ có màu còn lại, quá trình này diễn ra liên tục. Hỏi đến một lúc nào đó người ta có thể nhận được trong hộp tất cả các thẻ có cùng một màu hay không? Hãy giải thích vì sao? + Biết rằng đa thức f x chia cho x − 2 dư 11, chia cho x + 2 dư (−1), chia cho 2x − 4 được thương là 3x và còn dư. Tính f f (2023) (2023). Tìm tất cả giá trị của số tự nhiên n để biểu thức 64 3 2 Bn n n n 2 2 có giá trị là một số chính phương.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Châu Đức - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Châu Đức, tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Châu Đức – BR VT : + Viết phương trình đường thẳng (d): y = ax + b (a khác 0). Biết (d) song song với đường thẳng y = 2x và (d) cắt trục hoành tại điểm có hoành độ bằng 3. + Cho hình thang ABCD (AB // CD; AB < CD). Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, AC, CD, DB. 1) Chứng minh tứ giác EFGH là hình bình hành. 2) Tìm điều kiện của hình thang ABCD để tứ giác EFGH là hình thoi. 3) Gọi O là giao điểm của AC và BD (với O nằm trong tứ giác EFGH). Chứng minh: S_OEH + S_OFG = 1/2.S_EFGH. + Cho hình bình hành ABCD. Từ một điểm G trên đường chéo AC kẻ đường thẳng bất kì cắt cạnh AB tại điểm E và cắt cạnh AD tại điểm F. Chứng minh rằng: AB AD AC AE AF AG.
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Yên Thế - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi văn hóa cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Yên Thế, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 28 tháng 02 năm 2024. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Yên Thế – Bắc Giang : + Một tổ sản xuất dự kiến mỗi ngày sản xuất được 45 sản phẩm. Thực tế mỗi ngày tổ sản xuất thêm được 15 sản phẩm so với kế hoạch nên đã hoàn thành sớm dự kiến 2 ngày và vượt được 100 sản phẩm. Tính tổng số sản phẩm tổ dự kiến sản xuất? + Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm, hai đường chéo AC, BD cắt nhau tại O. Qua điểm D kẻ đường thẳng d vuông góc với DB, d cắt tia BC tại E. Kẻ CH vuông góc với DE (H thuộc DE). a) Chứng minh DC2 = CH.DB. b) Tính độ dài CH và chứng minh: CD là tia phân giác của ACH. c) Gọi K, F lần lượt là giao điểm của EO với CH và CD. Chứng minh: EK.FO = EO.FK. + Cho hình thang vuông có một góc 45°, các cạnh đáy có độ dài lần lượt là 8cm và 12cm, diện tích của hình thang đó là?
Đề học sinh giỏi huyện Toán 8 năm 2023 - 2024 phòng GDĐT Thiệu Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 THCS năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Thiệu Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 29 tháng 02 năm 2024. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2023 – 2024 phòng GD&ĐT Thiệu Hóa – Thanh Hóa : + Tìm các số nguyên tố a, b, c và số nguyên dương k thỏa mãn a2 + b2 + 16c2 = 9k2 + 18k + 10. + Cho hình vuông ABCD. Đường thẳng d đi qua C cắt hai tia AB, AD lần lượt tại M và N (AB < AM < AN). Gọi E là giao điểm của BC và DM; F là giao điểm của CD và BN; H là giao điểm của BN và DM. 1. Chứng minh EF song song với MN. 2. Chứng minh ADM đồng dạng với DFA và H là trực tâm của AEF. 3. Gọi giao điểm của AH và BC là K, giao điểm của AH và MN là O, giao điểm của MK và AC là I. Chứng minh MI/KI + AO/KO + CB/KB > 9.
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Tiên Du - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 28 tháng 02 năm 2024. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Tiên Du – Bắc Ninh : + Cho hình vuông ABCD, gọi O là giao điểm của AC và BD. Lấy điểm M là trung điểm của AD và điểm G trên đoạn thẳng OA sao cho GA = 2GO. Đường thẳng DG cắt cạnh AB tại điểm F. Đường thẳng CM cắt các đường thẳng BD và DF lần lượt tại điểm K và E. 1) Chứng minh rằng F là trung điểm của AB và CM vuông góc với DF. 2) Chứng minh GK // AD. 3) Đường thẳng BE cắt GK tại điểm P. Chứng minh PG = PK. + Cho A = (a + b + c)3 – a3 – b3 – c3 với a, b, c là ba số tự nhiên trong đó có đúng một số lẻ và hai số chẵn. Chứng minh rằng A chia hết cho 6.