Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG tỉnh Toán 9 năm học 2019 - 2020 sở GDĐT Lâm Đồng

Thứ Sáu ngày 22 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp tỉnh môn Toán lớp 9 THCS năm học 2019 – 2020. Đề thi chọn HSG tỉnh Toán 9 năm học 2019 – 2020 sở GD&ĐT Lâm Đồng gồm có 01 trang với 12 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, thời gian làm bài 150 phút. Trích dẫn đề thi chọn HSG tỉnh Toán 9 năm học 2019 – 2020 sở GD&ĐT Lâm Đồng : + Một máy bay chuyển động thẳng đều theo phương nằm ngang với vận tốc 150 m/s. Ở vị trí A phi công nhìn địa điểm E ở mặt đất thẳng phía trước máy bay theo góc 58 độ so với phương thẳng đứng và sau đó 20 giây đến vị trí B lại nhìn thấy địa điểm E theo góc 28 độ (hình 1). Tính độ cao h của máy bay so với mặt đất. + Một tàu lửa dài 120 m chạy qua một đường hầm với vận tốc 40 km/h. Từ lúc đầu tàu chui vào đường hầm cho tới lúc toa cuối cùng ra khỏi hầm mất 10 phút 15 giây. Tính chiều dài của đường hầm. + Cho hình thoi ABCD có độ dài cạnh bằng 2 và hai đường chéo cắt nhau tại O. Gọi R1 và R2 lần lượt là bán kính các đường tròn ngoại tiếp các tam giác ADC và DBC. Chứng minh rằng: 1/R1^2 + 1/R2^2 = 1.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Lạng Sơn
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Lạng Sơn; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2021; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Lạng Sơn : + Cho tam giác đều ABC nội tiếp đường tròn O R. Gọi H là một điểm di động trên đoạn thẳng OA (H khác O và HA HO). Đường thẳng đi qua H và vuông góc với OA cắt cung nhỏ AB tại M. Gọi K là hình chiếu vuông góc của M trên OB. a) Chứng minh BMK MAB. b) Các tiếp tuyến của O R tại A và B cắt tiếp tuyến tại M của O R lần lượt tại D và E OD OE cắt AB lần lượt tại F và G. Chứng minh rằng: OE OG OF OD. c) Tìm vị trí điểm H để chu vi tam giác MAB đạt giá trị lớn nhất. + Cho abc là các số thực dương thoả mãn 2 2 2 1 1 1 6 abc. Tìm giá trị nhỏ nhất của biểu thức 2 2 2 2 2 2 b c c a a b Q a b c b c a c a b. + Cho mỗi điểm trên mặt phẳng được tô bởi một trong hai màu xanh hoặc đỏ. Chứng minh rằng tồn tại một tam giác mà ba đỉnh và trọng tâm cùng màu.
Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Phú Yên
Ngày 30 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Phú Yên tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Phú Yên gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Đắk Lắk
Ngày 30 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Đắk Lắk tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Đắk Lắk gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi HSG tỉnh Toán 9 năm học 2020 - 2021 sở GDĐT Quảng Bình
Đề thi HSG tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có đáp án và lời giải chi tiết, kỳ thi được tổ chức vào ngày 08 tháng 12 năm 2020. Trích dẫn đề thi HSG tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Quảng Bình : + Số nguyên dương n được gọi là số điều hòa nếu tổng các bình phương của các ước dương của nó (kể cả 1 và n) bằng (n + 3)^2. Chứng minh rằng nếu pq (với p và q là các số nguyên tố khác nhau) là số điều hòa thì pq + 2 là số chính phương. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng đi qua điểm A(1;4) và cắt các tia Ox, Oy lần lượt tại B và C (khác O). a. Viết phương trình đường thẳng (d) sao cho biểu thức OA + OB + OC đạt giá trị nhỏ nhất. b. Tính giá trị lớn nhất của biểu thức P = OB.OC/BC. + Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn.