Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT Thạch Hà Hà Tĩnh

Nội dung Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT Thạch Hà Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT Thạch Hà Hà Tĩnh Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT Thạch Hà Hà Tĩnh Chào mừng quý thầy cô và các bạn học sinh lớp 9! Sytu xin giới thiệu đến các bạn đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thạch Hà, tỉnh Hà Tĩnh. Kỳ thi sẽ diễn ra vào ngày 28 tháng 04 năm 2022. Đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Thạch Hà – Hà Tĩnh bao gồm các câu hỏi sau: 1. Tổ chức tham quan, ngoại khóa cho học sinh giỏi với giá vé ban đầu mỗi người là 375,000 đồng. Sau khi giảm giá 10% cho giáo viên và 30% cho học sinh, tổng chi phí chuyến đi là 12,487,500 đồng. Hỏi có bao nhiêu học sinh và giáo viên tham gia chuyến đi biết số học sinh gấp 4 lần số giáo viên? 2. Trong tam giác vuông MNP tại M, đường cao MH, biết HN = 4cm và HP = 16cm. Tính độ dài MN, MH và đường tròn ngoại tiếp tam giác MNP. 3. Cho đường tròn tâm O, điểm ngoài đường tròn A. Kẻ đường thẳng qua A cắt đường tròn tại M và N (M nằm giữa A và N). Kẻ đường thẳng khác qua A, cắt đường tròn tại C và D (C nằm giữa A và D, C khác M). Chứng minh tứ giác ABCM là tứ giác nội tiếp đường tròn và DE vuông góc với AN.

Hy vọng đề thi thử này sẽ giúp các bạn ôn tập tốt và tự tin hơn cho kỳ thi tuyển sinh sắp tới. Chúc các bạn thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tham khảo Toán thi vào 10 năm 2023 - 2024 phòng GDĐT thị xã Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tham khảo môn Toán kỳ thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo thị xã Phú Thọ, tỉnh Phú Thọ; đề thi có đáp án và thang điểm dự kiến. Trích dẫn Đề tham khảo Toán thi vào 10 năm 2023 – 2024 phòng GD&ĐT thị xã Phú Thọ : + Cho một số có hai chữ số. Nếu đổi chỗ hai chữ số của nó thì được một số mới lớn hơn số đã cho là 63. Tổng của số đã cho và số mới tạo thành 99. Tổng các chữ số của số đó là? + Cho hàm số y = ax2 với a ≠ 0. Kết luận nào sau đây là đúng? A. Hàm số đồng biến khi a 0 và x 0 B. Hàm số đồng biến khi a 0 và x 0 C. Hàm số đồng biến khi a 0 và x 0 D. Hàm số đồng biến khi a 0 và x = 0. + Cho hai điểm A B cố định. Một điểm C khác B di chuyển trên đường tròn (O) đường kính AB sao cho AC BC. Tiếp tuyến của đường tròn (O) tại C cắt tiếp tuyến tại A ở D cắt AB ở E. Đường thẳng đi qua E vuông góc với AB cắt AC BD lần lượt tại F G. Gọi I là trung điểm AE. a) Chứng minh rằng tứ giác ADCO nội tiếp một đường tròn. b) Chứng minh rằng 2 2 AB OD BC c) Chứng minh EF 2 EG d) Chứng minh rằng trực tâm tam giác GIF là một điểm cố định.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (đề chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; kỳ thi được diễn ra vào thứ Ba ngày 30 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hà Nam : + Cho biểu thức A. 1. Rút gọn biểu thức A. 2. Tìm tất cả các số nguyên của x để |2A − 1| + 1 = 2A. + Cho đường tròn (O) có dây cung BC cố định và không đi qua tâm O. Gọi A là điểm di động trên đường tròn (O) sao cho tam giác ABC nhọn và AB < AC. Gọi M là trung điểm của cạnh BC và H là trực tâm tam giác ABC. Tia MH cắt đường tròn (O) tại K, đường thẳng AH cắt cạnh BC tại D và AE là đường kính của đường tròn (O). 1. Chứng minh BAD = CAE. 2. Chứng minh rằng tứ giác BHCE là hình bình hành và HA.HD = HK.HM. 3. Tia KD cắt đường tròn (O) tại I (I khác K), đường thẳng đi qua I và vuông góc với đường thẳng BC cắt AM tại J. Chứng minh rằng các đường thẳng AK, BC và HJ cùng đi qua một điểm. 4. Một đường tròn thay đổi luôn tiếp xúc với AK tại A và cắt các cạnh AB, AC lần lượt tại P, Q phân biệt. Gọi N là trung điểm của đoạn thẳng PQ. Chứng minh rằng đường thẳng AN luôn đi qua một điểm cố định. + Cho a, b, c là ba số thực dương thỏa mãn điều kiện. Tìm giá trị lớn nhất của biểu thức.
Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2023 - 2024 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (đề chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào thứ Hai ngày 29 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Hà Nam : + Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x2, đường thẳng (d) có phương trình y = 2x + m2 – 4m + 9 (với m là tham số) và đường thẳng (delta) có phương trình y = (a − 3)x + 4 (với a là tham số). 1. Tìm a để đường thẳng (d) và đường thẳng (delta) vuông góc với nhau. 2. Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B với mọi m. Gọi A(x1;y1) và B(x2;y2) (với x1 < x2), tìm tất cả các giá trị của tham số m sao cho |x1 – 2023| – |x2 + 2023| = y1 + y2 – 48. + Cho đường tròn (O). Từ điểm M bên ngoài đường tròn kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm). Lấy điểm C trên cung nhỏ AB (C không nằm chính giữa cung AB, C khác A và B). Gọi D, E, F lần lượt là hình chiếu vuông góc của C trên các đường thẳng AB, AM, BM. 1. Chứng minh tứ giác AECD nội tiếp đường tròn. 2. Chứng minh rằng CDE = CFD. 3. Gọi I là giao điểm của AC và ED, K là giao điểm của CB và DF. Chứng minh CD vuông góc IK. 4. Đường tròn ngoại tiếp hai tam giác CIE và CKF cắt nhau tại điểm thứ hai N (N khác C). Chứng minh đường thẳng NC đi qua trung điểm của đoạn thẳng AB. + Cho a, b, c là các số không âm thỏa mãn a + b + c = 1011. Chứng minh.
Đề khảo sát Toán vào 10 năm 2023 lần 3 phòng GDĐT Giao Thuỷ - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát môn Toán tuyển sinh vào lớp 10 THPT năm 2023 lần 3 phòng Giáo dục và Đào tạo huyện Giao Thuỷ, tỉnh Nam Định; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán vào 10 năm 2023 lần 3 phòng GD&ĐT Giao Thuỷ – Nam Định : + Cho phương trình 2 2 3 0 x mx (1) (với mlà tham số). a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị m. b) Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm phân biệt 1 2 x x thỏa mãn 1 2 x x 3. + Cho đường tròn O 3cm. Từ điểm M nằm ngoài đường tròn O kẻ hai tiếp tuyến MA, MB với đường tròn O (A, B là các tiếp điểm) sao cho 0 AOB 120. Tính diện tích phần giới hạn bởi hai tiếp tuyến MA, MB và cung nhỏ AB. + Cho đường tròn (O) có dây AB không là đường kính, tiếp tuyến tại A và B cắt nhau tại M. Vẽ cát tuyến MCD nằm giữa hai tia MA và MO (MC MD). Đoạn thẳng MO cắt AB tại H và cắt (O) tại điểm I. Chứng minh: a) 2 MA MC MD và 2 MC MD OH OM MO. b) Tứ giác OHCD nội tiếp và CI là tia phân giác của HCM.