Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán vào năm 2023 2024 phòng GD ĐT thành phố Bắc Ninh

Nội dung Đề KSCL Toán vào năm 2023 2024 phòng GD ĐT thành phố Bắc Ninh Bản PDF - Nội dung bài viết Đề KSCL Toán vào năm 2023 2024 phòng GD ĐT thành phố Bắc Ninh Đề KSCL Toán vào năm 2023 2024 phòng GD ĐT thành phố Bắc Ninh Xin chào quý thầy cô và các em học sinh lớp 9! Để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 của phòng Giáo dục và Đào tạo thành phố Bắc Ninh, Sytu xin giới thiệu đến mọi người đề khảo sát chất lượng môn Toán. Đề thi sẽ bao gồm 40% câu hỏi trắc nghiệm (32 câu – 50 phút) và 60% câu hỏi tự luận (04 câu – 70 phút). Đề thi sẽ có đáp án và hướng dẫn chấm điểm để giúp các em ôn tập hiệu quả. Trích dẫn đề KSCL Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh: 1. Theo kế hoạch được sắp xếp, phòng họp chỉ có thể chứa 120 người. Tuy nhiên, đến buổi họp, lại có 160 người tham gia. Vì vậy, phải kê thêm 2 dãy ghế và mỗi dãy cần thêm một ghế nữa thì mới đủ chỗ. Hãy tính số dãy ghế ban đầu được sắp xếp. Biết rằng số dãy ghế ban đầu nhiều hơn 20 dãy và số ghế trên mỗi dãy bằng nhau. 2. Cho đường tròn có tâm O và đường kính AB. M là điểm chính giữa của cung AB và K là một điểm bất kỳ trên cung nhỏ BM (K khác B và M). Vẽ KP vuông góc với AB tại P và MH vuông góc với AK tại H. a) Chứng minh 4 điểm A, O, H, M thẳng hàng. b) Chứng minh rằng OH là tia phân giác của góc MOK. c) Xác định vị trí của điểm K trên cung BM sao cho tỉ số diện tích tam giác PKO và tam giác MAO là 1:2. 3. Khẳng định nào sau đây là đúng? A. Đường tròn là hình không có trục đối xứng. B. Đường tròn là hình có vô số trục đối xứng. C. Đường tròn là hình có hai trục đối xứng. D. Đường tròn là hình có một trục đối xứng. Hy vọng đề KSCL Toán này sẽ giúp các em học sinh lớp 9 ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra khảo sát Toán 9 năm 2018 - 2019 phòng GDĐT Thanh Xuân - Hà Nội
Đề kiểm tra khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào thứ Sáu ngày 15 tháng 03 năm 2019. Trích dẫn đề kiểm tra khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một đội công nhân theo kế hoạch cần phải sản xuất 900 sản phẩm trong một số ngày quy định. Do mỗi ngày đội công nhân đó sản xuất vượt mức 3 sản phẩm nên đội công nhân đã hoàn thành vượt mức kế hoạch 90 sản phẩm và sớm hơn thời gian quy định 3 ngày. Hỏi theo kế hoạch, mỗi ngày đội công nhân phải sản xuất bao nhiêu sản phẩm? [ads] + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2(m – 1)x + 5 – 2m (m là tham số) và parabol (P): y = x^2. a) Chứng minh rằng với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. b) Tìm giá trị của m để (d) cắt (P) tại hai điểm phân biệt có tổng tung độ bằng 30. + Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn sao cho OA = 2R. Từ A kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). M là điểm bất kỳ trên cung nhỏ BC, tiếp tuyển tại M của đường tròn cắt các đường thẳng AB, AC lần lượt tại E và F. a) Chứng minh tứ giác ABOC là tứ giác nội tiếp. b) Chứng minh tam giác ABC là tam giác đều. c) Chứng minh khi M di động trên cung nhỏ BC thì chu vi tam giác AEF không đổi. Tính chu vi tam giác AEF theo R. d) Tìm vị trí của M trên cung nhỏ BC để đoạn EF có độ dài nhỏ nhất.
Đề khảo sát Toán 9 lần 2 năm 2018 - 2019 trường THCS Đại Áng - Hà Nội
Chủ Nhật ngày 03 tháng 03 năm 2019, trường Trung học Cơ sở Đại Áng, Thanh Trì – Hà Nội đã tiến hành tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 lần 2 năm học 2018 – 2019, đề thi gồm 05 bài toán tự luận, học sinh làm bài thi Toán trong 120 phút, kỳ thi nhằm kiểm tra chất lượng môn Toán đối với học sinh lớp 9 giai đoạn giữa học kỳ 2 năm học 2018 – 2019, đồng thời giúp học sinh rèn luyện chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020. Trích dẫn đề khảo sát Toán 9 lần 2 năm 2018 – 2019 trường THCS Đại Áng – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một xe ô tô dự định đi từ tỉnh A đến tỉnh B với vận tốc 40 km/h. Lúc đầu ô tô đi với vận tốc đó, khi còn 60 km nữa thì được nửa quãng đường AB người lái xe quyết định tăng vận tốc thêm 10 km/h trên quãng đường còn lại. Do đó đến B sớm hơn 1 giờ so với dự định. Tính quãng đường AB? [ads] + Cho parabol (P): y=x^2 và đường thẳng (d): y = mx + 3 (m là tham số). a) Chứng minh rằng (d) luôn cắt (P) tại 2 điểm phân biệt. b) Biết A(2; 4) là một trong 2 giao điểm của (d) và (P). Tìm m? + Cho nửa đường tròn tâm (O), đường kính AB. Điểm H cố định thuộc đoạn thẳng AO (H khác A và O). Đường thẳng đi qua điểm H và vuông góc với AD cắt nửa đường tròn (O) tại C. Trên cung BC lấy D bất kì (D khác B và C). Tiếp tuyến tại D của nửa đường tròn cắt HC tại E. Gọi I là giao điểm của AD và HC. a) Chứng minh tứ giác HBDI nội tiếp đường tròn. b) Chứng minh tam giác DEI cân. c) Gọi F là tâm đường tròn ngoại tiếp tam giác ICD. Chứng minh góc ABF có số đo không đổi khi D thay đổi trên cung BC (D khác B và C).
Đề khảo sát chất lượng Toán 9 năm 2019 sở GDĐT Bắc Ninh
THCS. giới thiệu đến thầy, cô và các em nội dung đề khảo sát chất lượng Toán 9 năm 2019 sở GD&ĐT Bắc Ninh, kỳ thi được diễn ra vào ngày 23 tháng 02 năm 2019 nhằm đánh giá chất lượng môn Toán của học sinh lớp 9, đồng thời giúp các em rèn luyện thường xuyên để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 năm học 2019 – 2020. Đề khảo sát chất lượng Toán 9 năm 2019 sở GD&ĐT Bắc Ninh gồm hai phần: phần trắc nghiệm gồm 06 câu, chiếm 30% số điểm, phần tự luận gồm 04 câu, chiếm 70% số điểm, học sinh làm bài thi môn Toán trong 90 phút, đây cũng sẽ là cấu trúc đề Toán tuyển sinh vào lớp 10 năm học 2019 – 2020 mà sở Giáo dục và Đào tạo Bắc Ninh sẽ sử dụng. [ads] Trích dẫn đề khảo sát chất lượng Toán 9 năm 2019 sở GD&ĐT Bắc Ninh : + Một doanh nghiệp tư nhân chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe Honda Future Fi với chi phí mua vào một chiếc là 27 triệu đồng và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất? Tại sao? + Cho nửa đường tròn (O) đường kính AB = 2R và dây cung AC = R. Gọi K là trung điểm của dây cung CB, qua B dựng tiếp tuyến Bx với (O) cắt tia OK tại D. a) Chứng minh rằng tam giác ABC vuông. b) Chứng minh rằng DC là tiếp tuyến của đường tròn (O). c) Kẻ CH vuông góc với AB tại H. Gọi I là trung điểm của cạnh CH. Tiếp tuyến tại A của đường tròn (O) cắt tia BI tại E. Chứng minh rằng ba điểm E, C, D thẳng hàng. + Cho hàm số y = (m – 3)x – 2m + 1 có đồ thị là đường thẳng d. a) Tìm m để d đi qua điểm M(1;2). b) Tìm m để d cắt trục Ox, Oy lần lượt tại hai điểm A và B sao cho tam giác OAB cân.