Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Đắk Lắk

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Đắk Lắk Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Đắk Lắk Đề thi tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Đắk Lắk Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông chuyên Toán năm học 2022 – 2023 của sở GD Đào tạo Đắk Lắk. Kỳ thi sẽ diễn ra vào thứ Năm ngày 16 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Đắk Lắk: Cho phương trình x² – (2m – 1)x + m² – m – 2 = 0 với m là tham số. Tìm tất cả các giá trị của m để phương trình đã cho có hai nghiệm phân biệt x₁ và x₂ thỏa mãn x₁³ + x₂³ – 5x₁x₂ = 10m + 15. Cho hình chữ nhật ABCD có chiều dài bằng 47cm, chiều rộng bằng 43cm. Chứng minh rằng trong số 2022 điểm bất kì nằm trong hình chữ nhật ABCD luôn tìm được hai điểm mà khoảng cách giữa chúng nhỏ hơn hoặc bằng 2cm. Cho đường tròn (O; R) và hai điểm P, Q nằm ngoài (O) sao cho góc POQ vuông, PQ không cắt (O). Kẻ hai tiếp tuyến PA, PB với đường tròn (O) (A, B là hai tiếp điểm; tia PA nằm giữa hai tia PQ và PO). Hai cát tuyến PDC, QEC thay đổi của (O) cùng đi qua C (D nằm giữa P và C; E nằm giữa Q và C). Tia PE cắt đường tròn tại điểm thứ hai F (F khác E). H là giao điểm của AB và OP. Chứng minh rằng: 1) Tích PE.PF không đổi. 2) AHE = AHF. 3) Đường tròn ngoại tiếp tam giác PDF luôn đi qua một điểm cố định. Hy vọng rằng đề thi này sẽ giúp các em rèn luyện và chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hưng Yên; đề thi mã đề 117 gồm 04 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giám thị phát đề).
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 - 2023 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào thứ Tư ngày 08 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Một người đi xe máy từ địa điểm A đến địa điểm B trên quãng đường 100 km. Khi từ B về A người đó đã giảm vận tốc 10 km/h so với lúc đi nên thời gian lúc về nhiều hơn thời gian lúc đi là 30 phút. Tính vận tốc của người đó lúc đi. + Từ điểm M nằm bên ngoài đường tròn (O), kẻ hai tiếp tuyến MA, MB của (O) (A và B là hai tiếp điểm). Một đường thẳng qua M và không đi qua O cắt (O) tại hai điểm C và D (C nằm giữa M, D và A thuộc cung nhỏ CD). a) Chứng minh tứ giác AMBO nội tiếp. b) Chứng minh MA2 = MC.MD. c) Gọi I là giao điểm của AB và MO. Chứng minh tứ giác CDOI nội tiếp. d) Kẻ đường thẳng qua D vuông góc với MO cắt (O) tại E khác D. Chứng minh ba điểm C, I, E thẳng hàng. + Với các số thực x, y, z thỏa mãn x >= 1, y >= 1, z >= 1 và x2 + 2y2 + 3z2 = 15. Tìm giá trị nhỏ nhất của biểu thức P = x + y + z.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Lạng Sơn
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lạng Sơn. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Lạng Sơn : + Cho phương trình bậc hai với tham số m: x2 – 2(m + 1)x + 2m – 3 = 0 (1). 1. Giải phương trình (1) khi m = 0. 2. Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1 và x2 với mọi m. Tìm tất cả các giá trị của m thỏa mãn: x1 + x2 – 2x1x2 = 1. + Giải các phương trình và hệ phương trình sau. + Cho đường tròn (O) đường kính AB. Dây cung MN vuông góc với AB, (AM < BM). Hai đường thẳng BM và NA cắt nhau tại K. Gọi H là chân đường vuông góc kẻ từ K đến đường thẳng AB. a. Chứng minh rằng tứ giác AHKM nội tiếp trong một đường tròn. b. Chứng minh rằng NB.HK = AN.HB. c. Chứng minh HM là tiếp tuyến của đường tròn (O).
Đề vào lớp 10 môn Toán (chuyên) 2022 - 2023 trường chuyên Nguyễn Trãi - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương. Trích dẫn đề vào lớp 10 môn Toán (chuyên) 2022 – 2023 trường chuyên Nguyễn Trãi – Hải Dương : + Cho đa thức P(x) với các hệ số nguyên thỏa mãn P(2021).P(2022) = 2023. Chứng minh rằng biểu thức P(x) – 2024 không có nghiệm nguyên. + Cho đường tròn (O) và dây cung AB không đi qua tâm O. Gọi M là điểm chính giữa của cung nhỏ AB; D là một điểm thay đổi trên cung lớn AB (D khác A và B); DM cắt AB tại C. a. Chứng minh rằng MB.BD = MD.BC; b. Chứng minh rằng MB là tiếp tuyến của đường tròn ngoại tiếp tam giác BCD và khi điểm D thay đổi thì tâm đường tròn ngoại tiếp tam giác BCD nằm trên một đường thẳng cố định. + Cho hình thoi ABCD có AB = 2. Gọi R1 và R2 lần lượt là bán kính đường tròn ngoại tiếp các giác ABC và ABD. Chứng minh rằng R1 + R2 >= 2.